Fork keras related tracking test to keras/tests

PiperOrigin-RevId: 316482123
Change-Id: I20645bbfdd926e2c83136ee27c6ef9325cb1f438
This commit is contained in:
Scott Zhu 2020-06-15 09:35:04 -07:00 committed by TensorFlower Gardener
parent 3854251adb
commit 16ac7c04d4
7 changed files with 1602 additions and 1433 deletions

View File

@ -370,6 +370,71 @@ tf_py_test(
],
)
tf_py_test(
name = "tracking_test",
srcs = ["tracking_test.py"],
python_version = "PY3",
tags = [
"no_windows",
"nomac",
],
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:constant_op",
"//tensorflow/python:dtypes",
"//tensorflow/python:framework_ops",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:math_ops",
"//tensorflow/python:variables",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:test",
"//tensorflow/python/keras/engine",
"//tensorflow/python/keras/layers:core",
"//tensorflow/python/keras/layers:normalization",
"//tensorflow/python/module",
"//tensorflow/python/training/tracking",
"//tensorflow/python/training/tracking:data_structures",
"//tensorflow/python/training/tracking:util",
"@absl_py//absl/testing:parameterized",
],
)
tf_py_test(
name = "tracking_util_test",
srcs = ["tracking_util_test.py"],
python_version = "PY3",
tags = ["notsan"], # b/74395663
deps = [
"//tensorflow/compiler/tests:xla_test",
"//tensorflow/python:checkpoint_management",
"//tensorflow/python:client_testlib",
"//tensorflow/python:constant_op",
"//tensorflow/python:control_flow_ops",
"//tensorflow/python:extra_py_tests_deps",
"//tensorflow/python:framework_ops",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:init_ops",
"//tensorflow/python:platform",
"//tensorflow/python:resource_variable_ops",
"//tensorflow/python:saver",
"//tensorflow/python:state_ops",
"//tensorflow/python:template",
"//tensorflow/python:training_util",
"//tensorflow/python:variable_scope",
"//tensorflow/python:variables",
"//tensorflow/python/eager:backprop",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:def_function",
"//tensorflow/python/keras/engine",
"//tensorflow/python/keras/layers:core",
"//tensorflow/python/keras/optimizer_v2",
"//tensorflow/python/training/tracking",
"//tensorflow/python/training/tracking:graph_view",
"//tensorflow/python/training/tracking:util",
"@absl_py//absl/testing:parameterized",
],
)
py_library(
name = "get_config_samples",
srcs = ["get_config_samples.py"],

View File

@ -0,0 +1,610 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl.testing import parameterized
import numpy
import six
from tensorflow.python.eager import context
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.layers import normalization
from tensorflow.python.module import module
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.training.tracking import base
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import tracking
from tensorflow.python.training.tracking import util
class HasList(training.Model):
def __init__(self):
super(HasList, self).__init__()
self.layer_list = data_structures.List([core.Dense(3)])
self.layer_list.append(core.Dense(4))
self.layer_list.extend(
[core.Dense(5),
core.Dense(6, kernel_regularizer=math_ops.reduce_sum)])
self.layer_list += [
core.Dense(7, bias_regularizer=math_ops.reduce_sum),
core.Dense(8)
]
self.layer_list += (
data_structures.List([core.Dense(9)]) + data_structures.List(
[core.Dense(10)]))
self.layer_list.extend(
data_structures.List(
list([core.Dense(11)]) + [core.Dense(12)]))
self.layers_with_updates = data_structures.List(
(normalization.BatchNormalization(),))
def call(self, x):
aggregation = 0.
for l in self.layer_list:
x = l(x)
aggregation += math_ops.reduce_sum(x)
bn, = self.layers_with_updates
return bn(x) / aggregation
class ListTests(test.TestCase):
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testTracking(self):
model = HasList()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 12], output.shape)
self.assertEqual(11, len(model.layers))
self.assertEqual(10, len(model.layer_list.layers))
six.assertCountEqual(
self,
model.layers,
model.layer_list.layers + model.layers_with_updates)
for index in range(10):
self.assertEqual(3 + index, model.layer_list.layers[index].units)
self.assertEqual(2, len(model._checkpoint_dependencies))
self.assertIs(model.layer_list, model._checkpoint_dependencies[0].ref)
self.assertIs(model.layers_with_updates,
model._checkpoint_dependencies[1].ref)
self.assertEqual(
10, len(model._checkpoint_dependencies[0].ref._checkpoint_dependencies))
self.evaluate([v.initializer for v in model.variables])
self.evaluate(model.variables[0].assign([[1., 2., 3.], [4., 5., 6.]]))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(model.variables[0].assign(array_ops.zeros([2, 3])))
model.load_weights(save_path)
self.assertAllEqual([[1., 2., 3.], [4., 5., 6.]],
self.evaluate(model.variables[0]))
v = variables.Variable(1.)
model.var_list = [v]
self.assertIn(v, model.variables)
self.assertIn(v, model.trainable_variables)
self.assertNotIn(v, model.non_trainable_variables)
self.assertIn(model.layer_list[0].trainable_weights[0],
model.trainable_weights)
def testSubModelTracking(self):
model = training.Model()
model.v = variables.Variable(1.)
self.assertIn(model.v, model.trainable_weights)
model2 = training.Model()
model2.m = [model]
self.assertIn(model.v, model2.trainable_weights)
def testSubSequentialTracking(self):
class _Subclassed(training.Model):
def __init__(self, wrapped):
super(_Subclassed, self).__init__()
self._wrapped = wrapped
def call(self, x):
return self._wrapped(x)
model = sequential.Sequential()
layer = core.Dense(1)
model.add(layer)
model2 = _Subclassed(model)
model2(array_ops.ones([1, 2]))
model2.m = [model]
self.assertIn(layer.kernel, model2.trainable_weights)
def testLayerTrackedThroughSequential(self):
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def ffnet(layer_sizes, name):
ff = sequential.Sequential(name=name)
for i, width in enumerate(layer_sizes):
ff.add(core.Dense(
width,
activation=("relu" if i < len(layer_sizes)-1 else None)))
return ff
class MyModel2(training.Model):
def __init__(self, config, name="my_model_2"):
super(MyModel2, self).__init__(name=name)
self._num_tokens = config.num_tokens
# list of sub-models
self._ffnet = [ffnet(config.module_layers + (self._num_tokens,), "ff")]
def null_input(self):
return array_ops.zeros([1, self._num_tokens], dtype=dtypes.float32)
def call(self, input_, module_index=None):
return self._ffnet[0](input_)
m2 = MyModel2(AttrDict(
num_tokens=5,
module_layers=(50, 30)))
# Construct
m2(m2.null_input())
self.assertLen(m2.trainable_variables, 6)
@test_util.run_v1_only("b/120545219")
def testUpdatesForwarded(self):
with context.graph_mode():
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertGreater(len(model.layers_with_updates[0].updates), 0)
self.assertEqual(set(model.layers_with_updates[0].updates),
set(model.updates))
with context.eager_mode():
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEqual(0, len(model.updates))
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testLossesForwarded(self):
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEqual(2, len(model.losses))
def testModelContainersCompareEqual(self):
class HasEqualContainers(training.Model):
def __init__(self):
super(HasEqualContainers, self).__init__()
self.l1 = []
self.l2 = []
model = HasEqualContainers()
first_layer = HasEqualContainers()
model.l1.append(first_layer)
second_layer = HasEqualContainers()
model.l2.append(second_layer)
self.assertEqual([first_layer, second_layer], model.layers)
@test_util.run_in_graph_and_eager_modes
def testTensorConversion(self):
class ListToTensor(training.Model):
def __init__(self):
super(ListToTensor, self).__init__()
self.l = [1., 2., 3.]
self.assertAllEqual(
[1., 2., 3.],
self.evaluate(constant_op.constant(ListToTensor().l)))
self.assertAllEqual(
[1., 2., 3.],
self.evaluate(array_ops.pack(ListToTensor().l)))
class ListWrapperTest(test.TestCase):
def testLayerCollectionWithExternalMutation(self):
l = []
l_wrapper = data_structures.ListWrapper(l)
layer = core.Dense(1)
l.append(layer)
self.assertEqual([layer], l_wrapper.layers)
class HasMapping(training.Model):
def __init__(self):
super(HasMapping, self).__init__()
self.layer_dict = data_structures.Mapping(output=core.Dense(7))
self.layer_dict["norm"] = data_structures.List()
self.layer_dict["dense"] = data_structures.List()
self.layer_dict["dense"].extend(
[core.Dense(5),
core.Dense(6, kernel_regularizer=math_ops.reduce_sum)])
self.layer_dict["norm"].append(
normalization.BatchNormalization())
self.layer_dict["norm"].append(
normalization.BatchNormalization())
def call(self, x):
aggregation = 0.
for norm, dense in zip(self.layer_dict["norm"], self.layer_dict["dense"]):
x = norm(dense(x))
aggregation += math_ops.reduce_sum(x)
return self.layer_dict["output"](x) / aggregation
class MappingTests(test.TestCase):
@test_util.run_in_graph_and_eager_modes
def testTracking(self):
model = HasMapping()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 7], output.shape.as_list())
self.assertEqual(5, len(model.layers))
six.assertCountEqual(self, model.layers, model.layer_dict.layers)
self.assertEqual(1, len(model._checkpoint_dependencies))
self.assertIs(model.layer_dict, model._checkpoint_dependencies[0].ref)
self.evaluate([v.initializer for v in model.variables])
test_var = model.layer_dict["output"].kernel
self.evaluate(test_var.assign(array_ops.ones([6, 7])))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(test_var.assign(array_ops.zeros([6, 7])))
model.load_weights(save_path)
self.assertAllEqual(numpy.ones([6, 7]),
self.evaluate(test_var))
def testLayerCollectionWithExternalMutation(self):
d = {}
root = tracking.AutoTrackable()
root.wrapper = d
self.assertEqual([], root.wrapper.layers)
self.assertEqual([], root.wrapper.trainable_weights)
layer1 = core.Dense(1)
layer2 = core.Dense(1)
d["a"] = layer1
d["b"] = layer2
self.assertEqual([layer1, layer2], root.wrapper.layers)
# The layers have still not created variables
self.assertEqual([], root.wrapper.trainable_weights)
def testDictWrapperBadKeys(self):
a = tracking.AutoTrackable()
a.d = {}
a.d[1] = data_structures.List()
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "non-string key"):
model.save_weights(save_path)
def testDictWrapperNoDependency(self):
a = tracking.AutoTrackable()
a.d = data_structures.NoDependency({})
a.d[1] = [3]
self.assertEqual([a], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testNonStringKeyNotTrackableValue(self):
a = tracking.AutoTrackable()
a.d = {}
a.d["a"] = [3]
a.d[1] = data_structures.NoDependency([3])
self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testNonAppendNotTrackable(self):
# Non-append mutations (deleting or overwriting values) are OK when the
# values aren't tracked.
a = tracking.AutoTrackable()
a.d = {}
a.d["a"] = [3]
a.d[1] = 3
a.d[1] = 2
self.assertEqual(2, a.d[1])
del a.d[1]
a.d[2] = data_structures.NoDependency(tracking.AutoTrackable())
second = tracking.AutoTrackable()
a.d[2] = data_structures.NoDependency(second)
self.assertIs(second, a.d[2])
self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testPopNoSave(self):
model = training.Model()
model.d = {}
model.d["a"] = []
model.d.pop("a")
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "Unable to save"):
model.save_weights(save_path)
def testExternalModificationNoSave(self):
model = training.Model()
external_reference = {}
model.d = external_reference
external_reference["a"] = []
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "modified outside the wrapper"):
model.save_weights(save_path)
def testOverwriteCanStillSave(self):
model = training.Model()
model.d = {}
model.d["a"] = {}
model.d["a"] = {}
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
def testIter(self):
model = training.Model()
model.d = {1: 3}
model.d[1] = 3
self.assertEqual([1], list(model.d))
new_dict = {}
# This update() is super tricky. If the dict wrapper subclasses dict,
# CPython will access its storage directly instead of calling any
# methods/properties on the object. So the options are either not to
# subclass dict (in which case update will call normal iter methods, but the
# object won't pass isinstance checks) or to subclass dict and keep that
# storage updated (no shadowing all its methods like ListWrapper).
new_dict.update(model.d)
self.assertEqual({1: 3}, new_dict)
class HasTuple(training.Model):
def __init__(self):
super(HasTuple, self).__init__()
self.layer_list = (
core.Dense(3), core.Dense(4),
core.Dense(5, kernel_regularizer=math_ops.reduce_sum))
self.layers_with_updates = (normalization.BatchNormalization(),)
def call(self, x):
aggregation = 0.
for l in self.layer_list:
x = l(x)
aggregation += math_ops.reduce_sum(x)
bn, = self.layers_with_updates
return bn(x) / aggregation
class TupleTests(test.TestCase, parameterized.TestCase):
@test_util.run_in_graph_and_eager_modes
def testTracking(self):
model = HasTuple()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 5], output.shape.as_list())
self.assertLen(model.layers, 4)
self.assertLen(model.layer_list.layers, 3)
six.assertCountEqual(
self,
model.layers,
tuple(model.layer_list.layers) + model.layers_with_updates)
self.assertEqual(3, model.layer_list.layers[0].units)
self.assertEqual(4, model.layer_list.layers[1].units)
self.assertEqual(5, model.layer_list.layers[2].units)
self.assertLen(model._checkpoint_dependencies, 2)
self.assertIs(model.layer_list, model._checkpoint_dependencies[0].ref)
self.assertIs(model.layers_with_updates,
model._checkpoint_dependencies[1].ref)
self.assertLen(
model._checkpoint_dependencies[0].ref._checkpoint_dependencies, 3)
self.evaluate([v.initializer for v in model.variables])
self.evaluate(model.variables[0].assign([[1., 2., 3.], [4., 5., 6.]]))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(model.variables[0].assign(array_ops.zeros([2, 3])))
model.load_weights(save_path)
self.assertAllEqual([[1., 2., 3.], [4., 5., 6.]],
self.evaluate(model.variables[0]))
v = variables.Variable(1.)
model.var_list = (v,)
self.assertIn(id(v), [id(obj) for obj in model.variables])
self.assertIn(id(v), [id(obj) for obj in model.trainable_variables])
self.assertNotIn(id(v), [id(obj) for obj in model.non_trainable_variables])
self.assertIn(id(model.layer_list[0].trainable_weights[0]),
[id(obj) for obj in model.trainable_weights])
@parameterized.named_parameters(
("Module", module.Module),
("Model", training.Model),
)
def testSubModelTracking(self, module_subclass):
model = module_subclass()
model.v = variables.Variable(1.)
self.assertIn(model.v, model.trainable_variables)
model2 = module_subclass()
model2.m = (model,)
self.assertIn(model.v, model2.trainable_variables)
def testSubSequentialTracking(self):
class _Subclassed(training.Model):
def __init__(self, wrapped):
super(_Subclassed, self).__init__()
self._wrapped = wrapped
def call(self, x):
return self._wrapped(x)
model = sequential.Sequential()
layer = core.Dense(1)
model.add(layer)
model2 = _Subclassed(model)
model2(array_ops.ones([1, 2]))
model2.m = (model,)
self.assertIn(layer.kernel, model2.trainable_weights)
def testUpdatesForwarded(self):
with ops.Graph().as_default():
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertNotEmpty(model.layers_with_updates[0].updates)
self.assertEqual(set(model.layers_with_updates[0].updates),
set(model.updates))
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEmpty(model.updates)
@test_util.run_in_graph_and_eager_modes
def testLossesForwarded(self):
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertLen(model.losses, 1)
def testModelContainersCompareEqual(self):
class HasEqualContainers(training.Model):
def __init__(self):
super(HasEqualContainers, self).__init__()
self.l1 = ()
self.l2 = ()
model = HasEqualContainers()
first_layer = HasEqualContainers()
model.l1 = (first_layer,)
second_layer = HasEqualContainers()
model.l2 = (second_layer,)
self.assertEqual((first_layer,), model.l1)
d = {model.l1: 1, model.l2: 2}
self.assertEqual(1, d[model.l1])
self.assertEqual(1, d[(first_layer,)])
self.assertEqual(2, d[model.l2])
self.assertEqual(2, d[(second_layer,)])
self.assertEqual([first_layer, second_layer], model.layers)
@test_util.run_in_graph_and_eager_modes
def testTensorConversion(self):
class TupleToTensor(training.Model):
def __init__(self):
super(TupleToTensor, self).__init__()
self.l = (1., 2., 3.)
self.assertAllEqual(
(1., 2., 3.),
self.evaluate(constant_op.constant(TupleToTensor().l)))
self.assertAllEqual(
(1., 2., 3.),
self.evaluate(array_ops.pack(TupleToTensor().l)))
class InterfaceTests(test.TestCase):
def testNoDependency(self):
root = tracking.AutoTrackable()
hasdep = tracking.AutoTrackable()
root.hasdep = hasdep
nodep = tracking.AutoTrackable()
root.nodep = data_structures.NoDependency(nodep)
self.assertEqual(1, len(root._checkpoint_dependencies))
self.assertIs(root._checkpoint_dependencies[0].ref, root.hasdep)
self.assertIs(root.hasdep, hasdep)
self.assertIs(root.nodep, nodep)
class NoDependencyModel(training.Model):
@base.no_automatic_dependency_tracking
def __init__(self):
super(NoDependencyModel, self).__init__()
self.a = []
self.b = tracking.AutoTrackable()
nodeps = NoDependencyModel()
self.assertEqual([nodeps], util.list_objects(nodeps))
@test_util.run_in_graph_and_eager_modes
def testDictionariesBasic(self):
a = training.Model()
b = training.Model()
a.attribute = {"b": b}
c = training.Model()
a.attribute["c"] = []
a.attribute["c"].append(c)
a_deps = util.list_objects(a)
self.assertIn(b, a_deps)
self.assertIn(c, a_deps)
self.assertIs(b, a.attribute["b"])
six.assertCountEqual(
self,
["b", "c"],
[dep.name for dep in a.attribute._checkpoint_dependencies])
self.assertEqual([b, c], a.layers)
self.assertEqual([b, c], a.attribute.layers)
self.assertEqual([c], a.attribute["c"].layers)
checkpoint = util.Checkpoint(a=a)
save_path = checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
with self.cached_session():
checkpoint.restore(save_path).assert_consumed().initialize_or_restore()
@test_util.run_in_graph_and_eager_modes
def testNoDepList(self):
a = training.Model()
a.l1 = data_structures.NoDependency([])
a.l1.insert(1, 0)
self.assertIsInstance(a.l1, list)
checkpoint = util.Checkpoint(a=a)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
a.l2 = []
a.l2.insert(1, module.Module())
with self.assertRaisesRegexp(ValueError, "A list element was replaced"):
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
if __name__ == "__main__":
test.main()

View File

@ -0,0 +1,926 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import weakref
from absl.testing import parameterized
import six
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import adam
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import template
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.training import training_util
from tensorflow.python.training.tracking import graph_view
from tensorflow.python.training.tracking import tracking
from tensorflow.python.training.tracking import util as trackable_utils
# pylint: disable=not-callable
class MyModel(training.Model):
"""A concrete Model for testing."""
def __init__(self):
super(MyModel, self).__init__()
self._named_dense = core.Dense(1, use_bias=True)
self._second = core.Dense(1, use_bias=False)
# We can still track Trackables which aren't Layers.
self._non_layer = NonLayerTrackable()
def call(self, values):
ret = self._second(self._named_dense(values))
return ret
class NonLayerTrackable(tracking.AutoTrackable):
def __init__(self):
super(NonLayerTrackable, self).__init__()
self.a_variable = trackable_utils.add_variable(
self, name="a_variable", shape=[])
class InterfaceTests(test.TestCase):
def testLayerDeduplication(self):
model = training.Model()
layer_one = core.Dense(1)
layer_two = core.Dense(1)
model.other_path = [layer_one, layer_two]
model.l2 = layer_two
model.l1 = layer_one
self.assertEqual([layer_one, layer_two], model.layers)
def testSaveWithOnlyKerasSession(self):
with ops.Graph().as_default():
inp = input_layer.Input([1])
dense = core.Dense(1)(inp)
model = training.Model(inp, dense)
model.compile(optimizer="sgd", loss="mse")
model.fit([1.], [2.])
checkpoint = trackable_utils.Checkpoint(model=model)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
def testObjectMetadata(self):
with context.eager_mode():
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
dense = core.Dense(1)
checkpoint = trackable_utils.Checkpoint(dense=dense)
dense(constant_op.constant([[1.]]))
save_path = checkpoint.save(checkpoint_prefix)
objects = trackable_utils.object_metadata(save_path)
all_variable_names = []
for obj in objects.nodes:
for attribute in obj.attributes:
all_variable_names.append(attribute.full_name)
self.assertIn("dense/kernel", all_variable_names)
class CheckpointingTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testNamingWithOptimizer(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
# A nuisance Model using the same optimizer. Its slot variables should not
# go in the checkpoint, since it is never depended on.
other_model = MyModel()
optimizer = adam.Adam(0.001)
step = training_util.get_or_create_global_step()
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model, step=step)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = control_flow_ops.group(
optimizer.apply_gradients(zip(gradients, variables)),
step.assign_add(1))
with backprop.GradientTape() as tape:
loss = other_model(input_value)
variables = other_model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
named_variables, serialized_graph, _ = graph_view.ObjectGraphView(
root_trackable).serialize_object_graph()
expected_slot_keys = (
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v",
)
expected_checkpoint_names = (
# Created in the root node, so no prefix.
"step",
"model/_second/kernel",
"model/_named_dense/kernel",
"model/_named_dense/bias",
# non-Layer dependency of the model
"model/_non_layer/a_variable",
"optimizer/learning_rate",
"optimizer/beta_1",
"optimizer/beta_2",
"optimizer/iter",
"optimizer/decay",
) + expected_slot_keys
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
expected_checkpoint_names = [
name + suffix for name in expected_checkpoint_names]
named_variables = {v.name: v for v in named_variables}
six.assertCountEqual(self, expected_checkpoint_names,
named_variables.keys())
# Check that we've mapped to the right variable objects (not exhaustive)
self.assertEqual(
"global_step",
named_variables["step" + suffix].full_name)
self.assertEqual(
"my_model/dense_1/kernel",
named_variables["model/_second/kernel" + suffix].full_name)
self.assertEqual(
"my_model/dense/kernel",
named_variables["model/_named_dense/kernel" + suffix].full_name)
self.assertEqual("Adam/beta_1",
named_variables["optimizer/beta_1" + suffix].full_name)
self.assertEqual("Adam/beta_2",
named_variables["optimizer/beta_2" + suffix].full_name)
# Spot check the generated protocol buffers.
self.assertEqual("optimizer",
serialized_graph.nodes[0].children[1].local_name)
optimizer_node = serialized_graph.nodes[
serialized_graph.nodes[0].children[1].node_id]
children = [node.local_name for node in optimizer_node.children]
six.assertCountEqual(
self,
# hyper variable dependencies
["beta_1", "beta_2", "iter", "decay", "learning_rate"],
children)
serialized_slot_keys = []
for slot in optimizer_node.slot_variables:
for attribute in (
serialized_graph.nodes[slot.slot_variable_node_id].attributes):
serialized_slot_keys.append(attribute.checkpoint_key)
six.assertCountEqual(
self,
[key + suffix for key in expected_slot_keys],
serialized_slot_keys)
@test_util.run_in_graph_and_eager_modes
def testSaveRestore(self):
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.assertFalse(root_trackable.save_counter.trainable)
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
prefix = os.path.join(self.get_temp_dir(), "ckpt")
self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.]))
m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m")
self.evaluate(state_ops.assign(m_bias_slot, [1.5]))
save_path = root_trackable.save(file_prefix=prefix)
self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.]))
self.evaluate(state_ops.assign(root_trackable.save_counter, 3))
optimizer_variables = self.evaluate(
sorted(optimizer.variables(), key=lambda v: v.name))
self.evaluate(state_ops.assign(m_bias_slot, [-2.]))
# Immediate restoration
status = root_trackable.restore(save_path=save_path).assert_consumed()
status.run_restore_ops()
self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1]))
self.assertAllEqual(1, self.evaluate(root_trackable.save_counter))
self.assertAllEqual([1.5], self.evaluate(m_bias_slot))
if not context.executing_eagerly():
return # Restore-on-create is only supported when executing eagerly
on_create_model = MyModel()
on_create_optimizer = adam.Adam(0.001)
on_create_root = trackable_utils.Checkpoint(
optimizer=on_create_optimizer, model=on_create_model)
# Deferred restoration
status = on_create_root.restore(save_path=save_path)
status.assert_nontrivial_match()
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
on_create_model(constant_op.constant([[3.]])) # create variables
self.assertAllEqual(1, self.evaluate(on_create_root.save_counter))
self.assertAllEqual([42.],
self.evaluate(
on_create_model._named_dense.variables[1]))
on_create_m_bias_slot = on_create_optimizer.get_slot(
on_create_model._named_dense.variables[1], "m")
status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaises(AssertionError):
status.assert_consumed()
# Optimizer slot variables are created when the original variable is
# restored.
self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot))
dummy_var = resource_variable_ops.ResourceVariable([1.])
on_create_optimizer.minimize(loss=dummy_var.read_value,
var_list=[dummy_var])
status.assert_existing_objects_matched()
status.assert_consumed()
self.assertAllEqual(
optimizer_variables,
# Creation order is different, so .variables() needs to be re-sorted.
self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name)))
# TODO(allenl): Debug garbage created by this test in python3.
def testDeferredRestorationUsageEager(self):
"""An idiomatic eager execution example."""
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
root.restore(checkpoint_management.latest_checkpoint(
checkpoint_directory))
for _ in range(num_training_steps):
# TODO(allenl): Use a Dataset and serialize/checkpoint it.
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
root.optimizer.iterations.numpy())
def testUsageGraph(self):
"""Expected usage when graph building."""
with context.graph_mode():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default():
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.CheckpointV1(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
with self.session(graph=ops.get_default_graph()) as session:
status = root.restore(save_path=checkpoint_path)
status.initialize_or_restore(session=session)
if checkpoint_path is None:
self.assertEqual(0, training_continuation)
with self.assertRaises(AssertionError):
status.assert_consumed()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
else:
status.assert_consumed()
status.assert_existing_objects_matched()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix, session=session)
self.assertEqual((training_continuation + 1) * num_training_steps,
session.run(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
session.run(root.save_counter))
@test_util.run_in_graph_and_eager_modes
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
def _train_fn(model, input_value):
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
manager = checkpoint_management.CheckpointManager(
root, checkpoint_directory, max_to_keep=1)
status = root.restore(save_path=manager.latest_checkpoint)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(_train_fn, model, input_value)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
manager.save()
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
def testPartialRestoreWarningObject(self):
with context.eager_mode():
optimizer = adam.Adam(0.0)
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.),
optimizer=optimizer)
# Create a slot variable to save
optimizer.minimize(original_root.v1.read_value, [original_root.v1])
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
weak_v1 = weakref.ref(partial_root.v1)
partial_root.restore(save_path)
self.assertEqual(2., partial_root.v1.numpy())
with test.mock.patch.object(logging, "warning") as mock_log:
del partial_root
self.assertIsNone(weak_partial_root())
self.assertIsNone(weak_v1())
messages = str(mock_log.call_args_list)
self.assertIn("(root).v2'", messages)
self.assertIn("(root).optimizer's state 'm' for (root).v1", messages)
self.assertNotIn("(root).v1'", messages)
self.assertIn("expect_partial()", messages)
# pylint: disable=cell-var-from-loop
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testWithDefun(self):
num_training_steps = 2
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
# Don't actually train so we can test variable values
optimizer = adam.Adam(0.)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
def train_fn():
@def_function.function
def _call_model(x):
return model(x)
with backprop.GradientTape() as tape:
loss = _call_model(constant_op.constant([[3.]]))
gradients = tape.gradient(loss, model.variables)
return optimizer.apply_gradients(zip(gradients, model.variables))
if not context.executing_eagerly():
train_fn = functools.partial(
self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
if training_continuation > 0:
status.assert_consumed()
self.assertAllClose([[42.]], self.evaluate(model.variables[0]))
else:
self.evaluate(model.variables[0].assign([[42.]]))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
# pylint: enable=cell-var-from-loop
def testAnonymousVarsInInit(self):
class Model(training.Model):
def __init__(self):
super(Model, self).__init__()
self.w = resource_variable_ops.ResourceVariable(0.0)
self.b = resource_variable_ops.ResourceVariable(0.0)
self.vars = [self.w, self.b]
def call(self, x):
return x * self.w + self.b
with context.eager_mode():
model = Model()
optimizer = adam.Adam(learning_rate=0.05)
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = trackable_utils.Checkpoint(
model=model, optimizer=optimizer)
for _ in range(2):
checkpoint.save(checkpoint_prefix)
with backprop.GradientTape() as tape:
loss = (constant_op.constant(1.)
- model(constant_op.constant(1.))) ** 2
grad = tape.gradient(loss, model.vars)
optimizer.apply_gradients(
[(g, v) for g, v in zip(grad, model.vars)])
@test_util.run_in_graph_and_eager_modes
def testDeferredSlotRestoration(self):
checkpoint_directory = self.get_temp_dir()
root = trackable_utils.Checkpoint()
root.var = trackable_utils.add_variable(
root, name="var", initializer=0.)
optimizer = adam.Adam(0.1)
variables = [root.var]
gradients = [1.]
train_op = optimizer.apply_gradients(zip(gradients, variables))
# Note that `optimizer` has not been added as a dependency of
# `root`. Create a one-off grouping so that slot variables for `root.var`
# get initialized too.
self.evaluate(trackable_utils.gather_initializers(
trackable_utils.Checkpoint(root=root, optimizer=optimizer)))
self.evaluate(train_op)
self.evaluate(state_ops.assign(root.var, 12.))
no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots"))
root.optimizer = optimizer
self.evaluate(state_ops.assign(root.var, 13.))
self.evaluate(state_ops.assign(
optimizer.get_slot(slot_name="m", var=root.var),
14.))
slots_path = root.save(os.path.join(checkpoint_directory, "with_slots"))
new_root = trackable_utils.Checkpoint()
# Load the slot-containing checkpoint (deferred), then immediately overwrite
# the non-slot variable (also deferred).
slot_status = new_root.restore(slots_path)
no_slot_status = new_root.restore(no_slots_path)
with self.assertRaises(AssertionError):
no_slot_status.assert_consumed()
new_root.var = trackable_utils.add_variable(
new_root, name="var", shape=[])
no_slot_status.assert_consumed()
no_slot_status.run_restore_ops()
self.assertEqual(12., self.evaluate(new_root.var))
new_root.optimizer = adam.Adam(0.1)
slot_status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaisesRegexp(AssertionError, "Unresolved object"):
slot_status.assert_consumed()
self.assertEqual(12., self.evaluate(new_root.var))
if context.executing_eagerly():
# Slot variables are only created with restoring initializers when
# executing eagerly.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
else:
# Slot variables are not created eagerly when graph building.
with self.assertRaises(KeyError):
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)
variables = [new_root.var]
gradients = [1.]
train_op = new_root.optimizer.apply_gradients(zip(gradients, variables))
# The slot variable now exists; restore() didn't create it, but we should
# now have a restore op for it.
slot_status.run_restore_ops()
if not context.executing_eagerly():
# The train op hasn't run when graph building, so the slot variable has
# its restored value. It has run in eager, so the value will be different.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
self.evaluate(train_op)
slot_status.assert_consumed()
def testManySavesGraph(self):
"""Saves after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
obj.save(checkpoint_prefix)
graph.finalize()
obj.save(checkpoint_prefix)
def testManyRestoresGraph(self):
"""Restores after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
save_path = obj.save(checkpoint_prefix)
obj.restore(save_path)
graph.finalize()
obj.restore(save_path)
@test_util.run_in_graph_and_eager_modes
def test_sequential(self):
model = sequential.Sequential()
checkpoint = trackable_utils.Checkpoint(model=model)
model.add(core.Dense(4))
second_dense = core.Dense(5)
model.add(second_dense)
model(constant_op.constant([[1.]]))
checkpoint.restore(None).initialize_or_restore()
self.evaluate(second_dense.bias.assign(
constant_op.constant([1., 2., 3., 4., 5.])))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = checkpoint.save(checkpoint_prefix)
self.evaluate(second_dense.bias.assign(
constant_op.constant([5., 6., 7., 8., 9.])))
checkpoint.restore(save_path).assert_consumed().run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.], self.evaluate(second_dense.bias))
deferred_sequential = sequential.Sequential()
deferred_sequential_checkpoint = trackable_utils.Checkpoint(
model=deferred_sequential)
status = deferred_sequential_checkpoint.restore(save_path)
deferred_sequential.add(core.Dense(4))
deferred_second_dense = core.Dense(5)
deferred_sequential.add(deferred_second_dense)
deferred_sequential(constant_op.constant([[1.]]))
status.run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.],
self.evaluate(deferred_second_dense.bias))
@test_util.run_in_graph_and_eager_modes
def test_initialize_if_not_restoring(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
optimizer_only_prefix = os.path.join(checkpoint_directory, "opt")
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
model=model) # Do not save the optimizer with the checkpoint.
optimizer_checkpoint = trackable_utils.Checkpoint(
optimizer=optimizer)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
def train_fn():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
# TODO(tanzheny): Add hyper variables to .variables(), and set them with
# set_weights etc.
variables_not_in_the_variables_property = [
obj for obj in optimizer._hyper.values()
if isinstance(obj, variables_lib.Variable)]
self.evaluate([v.initializer for v
in optimizer.variables()
+ variables_not_in_the_variables_property])
train_fn()
model_save_path = root.save(file_prefix=checkpoint_prefix)
self.evaluate(optimizer.beta_1.assign(42.))
optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix)
del train_fn
# Restore into a graph with the optimizer
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
status = root.restore(save_path=model_save_path)
input_value = constant_op.constant([[3.]])
def train_fn1():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn1 = functools.partial(self.evaluate, train_fn1())
status.initialize_or_restore()
train_fn1()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
del train_fn1
# Make sure initialization doesn't clobber later restores
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001, beta_1=1.0)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
opt_root = trackable_utils.Checkpoint(
optimizer=optimizer)
status = root.restore(save_path=model_save_path)
init_only_optimizer_status = opt_root.restore(save_path=None)
optimizer_status = opt_root.restore(save_path=optimizer_save_path)
input_value = constant_op.constant([[3.]])
def train_fn2():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn2 = functools.partial(self.evaluate, train_fn2())
optimizer_status.run_restore_ops()
status.initialize_or_restore()
init_only_optimizer_status.initialize_or_restore()
train_fn2()
self.assertEqual(42., self.evaluate(optimizer.beta_1))
class _ManualScope(tracking.AutoTrackable):
def __call__(self):
with variable_scope.variable_scope("ManualScope") as vs:
self.variable_scope = vs
with trackable_utils.capture_dependencies(template=self):
return self._build()
def _build(self):
return variable_scope.get_variable(name="in_manual_scope", shape=[])
class TemplateTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes
def test_trackable_save_restore(self):
def _templated():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
v2 = variable_scope.get_variable(
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
manual = _ManualScope()
return v, v + 1., v2, manual, manual()
save_template = template.make_template("s1", _templated)
v1_save, _, v2_save, manual_scope, manual_scope_v = save_template()
six.assertCountEqual(
self,
[id(v1_save), id(v2_save), id(manual_scope),
id(manual_scope_v), id(save_template)],
map(id, trackable_utils.list_objects(save_template)))
manual_dep, = manual_scope._checkpoint_dependencies
self.assertEqual("in_manual_scope", manual_dep.name)
self.assertIs(manual_scope_v, manual_dep.ref)
optimizer = adam.Adam(0.0)
save_root = trackable_utils.Checkpoint(
my_template=save_template, optimizer=optimizer)
optimizer.minimize(v1_save.read_value,
var_list=[v1_save])
self.evaluate([v.initializer for v in save_template.variables])
optimizer_variables = optimizer.variables() + list(
optimizer._hyper.values())
self.evaluate([v.initializer for v in optimizer_variables])
self.evaluate(v1_save.assign([12.]))
self.evaluate(v2_save.assign([14.]))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = save_root.save(checkpoint_prefix)
load_template = template.make_template("s2", _templated)
load_optimizer = adam.Adam(0.0)
load_root = trackable_utils.Checkpoint(
my_template=load_template, optimizer=load_optimizer)
status = load_root.restore(save_path)
var, var_plus_one, var2, _, _ = load_template()
load_optimizer.minimize(var.read_value, var_list=[var])
self.assertLen(load_template._checkpoint_dependencies, 3)
self.assertEqual("v", load_template._checkpoint_dependencies[0].name)
self.assertEqual("v2", load_template._checkpoint_dependencies[1].name)
self.assertEqual("ManualScope",
load_template._checkpoint_dependencies[2].name)
status.assert_consumed().run_restore_ops()
self.assertAllEqual([12.], self.evaluate(var))
self.assertAllEqual([13.], self.evaluate(var_plus_one))
self.assertAllEqual([14.], self.evaluate(var2))
class CheckpointCompatibilityTests(test.TestCase):
def _initialized_model(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
# A regular variable, a slot variable, and a non-slot Optimizer variable
# with known values to check when loading.
self.evaluate(model._named_dense.bias.assign([1.]))
self.evaluate(optimizer.get_slot(
var=model._named_dense.bias, slot_name="m").assign([2.]))
self.evaluate(optimizer.beta_1.assign(3.))
return root_trackable
def _set_sentinels(self, root_trackable):
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")
.assign([102.]))
self.evaluate(root_trackable.optimizer.beta_1.assign(103.))
def _check_sentinels(self, root_trackable):
self.assertAllEqual(
[1.], self.evaluate(root_trackable.model._named_dense.bias))
self.assertAllEqual([2.], self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")))
self.assertAllEqual(3.,
self.evaluate(root_trackable.optimizer.beta_1))
def _write_name_based_checkpoint(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph) as session:
root = self._initialized_model()
name_saver = saver_lib.Saver()
return name_saver.save(
sess=session,
save_path=checkpoint_prefix,
global_step=root.optimizer.iterations)
@test_util.run_in_graph_and_eager_modes
def testLoadFromNameBasedSaver(self):
"""Save a name-based checkpoint, load it using the object-based API."""
with test_util.device(use_gpu=True):
save_path = self._write_name_based_checkpoint()
root = self._initialized_model()
self._set_sentinels(root)
with self.assertRaises(AssertionError):
self._check_sentinels(root)
object_saver = trackable_utils.TrackableSaver(
graph_view.ObjectGraphView(root))
self._set_sentinels(root)
status = object_saver.restore(save_path)
if context.executing_eagerly():
self._check_sentinels(root)
if context.executing_eagerly():
status.assert_consumed()
status.assert_existing_objects_matched()
status.assert_nontrivial_match()
else:
# When graph building, we haven't read any keys, so we don't know
# whether the restore will be complete.
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_consumed()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_existing_objects_matched()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_nontrivial_match()
status.run_restore_ops()
self._check_sentinels(root)
self._set_sentinels(root)
status = object_saver.restore(save_path)
status.initialize_or_restore()
status.assert_nontrivial_match()
self._check_sentinels(root)
# Check that there is no error when keys are missing from the name-based
# checkpoint.
root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable([1.])
status = object_saver.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
def testSaveGraphLoadEager(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.eager_mode():
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed()
self._check_sentinels(root)
def testSaveEagerLoadGraph(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.eager_mode():
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed().run_restore_ops()
self._check_sentinels(root)
def testIgnoreSaveCounter(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with self.cached_session() as session:
# Create and save a model using Saver() before using a Checkpoint. This
# generates a snapshot without the Checkpoint's `save_counter`.
model = sequential.Sequential()
model.add(core.Flatten(input_shape=(1,)))
model.add(core.Dense(1))
name_saver = saver_lib.Saver(model.trainable_variables)
save_path = name_saver.save(
sess=session, save_path=checkpoint_prefix, global_step=1)
# Checkpoint.restore must successfully load that checkpoint.
ckpt = trackable_utils.Checkpoint(model=model)
status = ckpt.restore(save_path)
status.assert_existing_objects_matched()
# It should, however, refuse to load a checkpoint where an unrelated
# `save_counter` variable is missing.
model.layers[1].var = variables_lib.Variable(0., name="save_counter")
status = ckpt.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()

View File

@ -98,8 +98,6 @@ tf_py_test(
"//tensorflow/python:math_ops",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:test",
"//tensorflow/python/keras:engine",
"//tensorflow/python/keras/layers",
],
)
@ -149,7 +147,6 @@ py_library(
"//tensorflow/python:variables",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:def_function",
"//tensorflow/python/keras:backend",
"//tensorflow/python/training/saving:checkpoint_options",
"//tensorflow/python/training/saving:functional_saver",
"//tensorflow/python/training/saving:saveable_object_util",
@ -188,10 +185,6 @@ tf_py_test(
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:def_function",
"//tensorflow/python/eager:test",
"//tensorflow/python/keras:backend",
"//tensorflow/python/keras:engine",
"//tensorflow/python/keras/layers",
"//tensorflow/python/keras/optimizer_v2",
"//tensorflow/python/training/saving:checkpoint_options",
"@absl_py//absl/testing:parameterized",
"@six_archive//:six",

View File

@ -23,26 +23,16 @@ import os
import pickle
from absl.testing import parameterized
import numpy
import six
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.layers import normalization
from tensorflow.python.layers import core as non_keras_core
from tensorflow.python.module import module
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.training.tracking import data_structures
@ -52,184 +42,13 @@ from tensorflow.python.util import nest
from tensorflow.python.util import serialization
class HasList(training.Model):
def __init__(self):
super(HasList, self).__init__()
self.layer_list = data_structures.List([core.Dense(3)])
self.layer_list.append(core.Dense(4))
self.layer_list.extend(
[core.Dense(5),
core.Dense(6, kernel_regularizer=math_ops.reduce_sum)])
self.layer_list += [
core.Dense(7, bias_regularizer=math_ops.reduce_sum),
core.Dense(8)
]
self.layer_list += (
data_structures.List([core.Dense(9)]) + data_structures.List(
[core.Dense(10)]))
self.layer_list.extend(
data_structures.List(
list([core.Dense(11)]) + [core.Dense(12)]))
self.layers_with_updates = data_structures.List(
(normalization.BatchNormalization(),))
def call(self, x):
aggregation = 0.
for l in self.layer_list:
x = l(x)
aggregation += math_ops.reduce_sum(x)
bn, = self.layers_with_updates
return bn(x) / aggregation
class ListTests(test.TestCase):
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testTracking(self):
model = HasList()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 12], output.shape)
self.assertEqual(11, len(model.layers))
self.assertEqual(10, len(model.layer_list.layers))
six.assertCountEqual(
self,
model.layers,
model.layer_list.layers + model.layers_with_updates)
for index in range(10):
self.assertEqual(3 + index, model.layer_list.layers[index].units)
self.assertEqual(2, len(model._checkpoint_dependencies))
self.assertIs(model.layer_list, model._checkpoint_dependencies[0].ref)
self.assertIs(model.layers_with_updates,
model._checkpoint_dependencies[1].ref)
self.assertEqual(
10, len(model._checkpoint_dependencies[0].ref._checkpoint_dependencies))
self.evaluate([v.initializer for v in model.variables])
self.evaluate(model.variables[0].assign([[1., 2., 3.], [4., 5., 6.]]))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(model.variables[0].assign(array_ops.zeros([2, 3])))
model.load_weights(save_path)
self.assertAllEqual([[1., 2., 3.], [4., 5., 6.]],
self.evaluate(model.variables[0]))
v = variables.Variable(1.)
model.var_list = [v]
self.assertIn(v, model.variables)
self.assertIn(v, model.trainable_variables)
self.assertNotIn(v, model.non_trainable_variables)
self.assertIn(model.layer_list[0].trainable_weights[0],
model.trainable_weights)
def testSubModelTracking(self):
model = training.Model()
model.v = variables.Variable(1.)
self.assertIn(model.v, model.trainable_weights)
model2 = training.Model()
model2.m = [model]
self.assertIn(model.v, model2.trainable_weights)
def testSubSequentialTracking(self):
class _Subclassed(training.Model):
def __init__(self, wrapped):
super(_Subclassed, self).__init__()
self._wrapped = wrapped
def call(self, x):
return self._wrapped(x)
model = sequential.Sequential()
layer = core.Dense(1)
model.add(layer)
model2 = _Subclassed(model)
model2(array_ops.ones([1, 2]))
model2.m = [model]
self.assertIn(layer.kernel, model2.trainable_weights)
def testLayerTrackedThroughSequential(self):
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def ffnet(layer_sizes, name):
ff = sequential.Sequential(name=name)
for i, width in enumerate(layer_sizes):
ff.add(core.Dense(
width,
activation=("relu" if i < len(layer_sizes)-1 else None)))
return ff
class MyModel2(training.Model):
def __init__(self, config, name="my_model_2"):
super(MyModel2, self).__init__(name=name)
self._num_tokens = config.num_tokens
# list of sub-models
self._ffnet = [ffnet(config.module_layers + (self._num_tokens,), "ff")]
def null_input(self):
return array_ops.zeros([1, self._num_tokens], dtype=dtypes.float32)
def call(self, input_, module_index=None):
return self._ffnet[0](input_)
m2 = MyModel2(AttrDict(
num_tokens=5,
module_layers=(50, 30)))
# Construct
m2(m2.null_input())
self.assertLen(m2.trainable_variables, 6)
def testJSONSerialization(self):
obj = tracking.AutoTrackable()
obj.l = [1]
json.dumps(obj.l, default=serialization.get_json_type)
@test_util.run_v1_only("b/120545219")
def testUpdatesForwarded(self):
with context.graph_mode():
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertGreater(len(model.layers_with_updates[0].updates), 0)
self.assertEqual(set(model.layers_with_updates[0].updates),
set(model.updates))
with context.eager_mode():
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEqual(0, len(model.updates))
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testLossesForwarded(self):
model = HasList()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEqual(2, len(model.losses))
def testModelContainersCompareEqual(self):
class HasEqualContainers(training.Model):
def __init__(self):
super(HasEqualContainers, self).__init__()
self.l1 = []
self.l2 = []
model = HasEqualContainers()
first_layer = HasEqualContainers()
model.l1.append(first_layer)
second_layer = HasEqualContainers()
model.l2.append(second_layer)
self.assertEqual([first_layer, second_layer], model.layers)
def testNotTrackable(self):
class NotTrackable(object):
pass
@ -245,23 +64,6 @@ class ListTests(test.TestCase):
with self.assertRaises(AttributeError):
data_structures.List().pop()
@test_util.run_in_graph_and_eager_modes
def testTensorConversion(self):
class ListToTensor(training.Model):
def __init__(self):
super(ListToTensor, self).__init__()
self.l = [1., 2., 3.]
self.assertAllEqual(
[1., 2., 3.],
self.evaluate(constant_op.constant(ListToTensor().l)))
self.assertAllEqual(
[1., 2., 3.],
self.evaluate(array_ops.pack(ListToTensor().l)))
def testNesting(self):
with context.graph_mode():
inner = data_structures.List()
@ -315,8 +117,7 @@ class ListTests(test.TestCase):
self.assertEqual(l[:-1], [v1, v2, v3])
def testHash(self):
has_sequences = set([data_structures.List(),
data_structures.List()])
has_sequences = {data_structures.List(), data_structures.List()}
self.assertEqual(2, len(has_sequences))
self.assertNotIn(data_structures.List(), has_sequences)
@ -454,13 +255,6 @@ class ListWrapperTest(test.TestCase):
l.append(1)
self.assertEqual([1], l_wrapper)
def testLayerCollectionWithExternalMutation(self):
l = []
l_wrapper = data_structures.ListWrapper(l)
layer = core.Dense(1)
l.append(layer)
self.assertEqual([layer], l_wrapper.layers)
def testNotHashable(self):
with self.assertRaises(TypeError):
hash(data_structures.ListWrapper())
@ -538,50 +332,8 @@ class ListWrapperTest(test.TestCase):
return l._checkpoint_dependencies # pylint: disable=protected-access
class HasMapping(training.Model):
def __init__(self):
super(HasMapping, self).__init__()
self.layer_dict = data_structures.Mapping(output=core.Dense(7))
self.layer_dict["norm"] = data_structures.List()
self.layer_dict["dense"] = data_structures.List()
self.layer_dict["dense"].extend(
[core.Dense(5),
core.Dense(6, kernel_regularizer=math_ops.reduce_sum)])
self.layer_dict["norm"].append(
normalization.BatchNormalization())
self.layer_dict["norm"].append(
normalization.BatchNormalization())
def call(self, x):
aggregation = 0.
for norm, dense in zip(self.layer_dict["norm"], self.layer_dict["dense"]):
x = norm(dense(x))
aggregation += math_ops.reduce_sum(x)
return self.layer_dict["output"](x) / aggregation
class MappingTests(test.TestCase):
@test_util.run_in_graph_and_eager_modes
def testTracking(self):
model = HasMapping()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 7], output.shape.as_list())
self.assertEqual(5, len(model.layers))
six.assertCountEqual(self, model.layers, model.layer_dict.layers)
self.assertEqual(1, len(model._checkpoint_dependencies))
self.assertIs(model.layer_dict, model._checkpoint_dependencies[0].ref)
self.evaluate([v.initializer for v in model.variables])
test_var = model.layer_dict["output"].kernel
self.evaluate(test_var.assign(array_ops.ones([6, 7])))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(test_var.assign(array_ops.zeros([6, 7])))
model.load_weights(save_path)
self.assertAllEqual(numpy.ones([6, 7]),
self.evaluate(test_var))
def testJSONSerialization(self):
obj = tracking.AutoTrackable()
obj.d = {"a": 2}
@ -605,20 +357,6 @@ class MappingTests(test.TestCase):
with self.assertRaises(TypeError):
mapping[1] = data_structures.List()
def testLayerCollectionWithExternalMutation(self):
d = {}
root = tracking.AutoTrackable()
root.wrapper = d
self.assertEqual([], root.wrapper.layers)
self.assertEqual([], root.wrapper.trainable_weights)
layer1 = core.Dense(1)
layer2 = core.Dense(1)
d["a"] = layer1
d["b"] = layer2
self.assertEqual([layer1, layer2], root.wrapper.layers)
# The layers have still not created variables
self.assertEqual([], root.wrapper.trainable_weights)
def testHashing(self):
has_mappings = set([data_structures.Mapping(),
data_structures.Mapping()])
@ -633,101 +371,6 @@ class MappingTests(test.TestCase):
with self.assertRaisesRegexp(TypeError, "unhashable"):
set([a.d])
def testDictWrapperBadKeys(self):
a = tracking.AutoTrackable()
a.d = {}
a.d[1] = data_structures.List()
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "non-string key"):
model.save_weights(save_path)
def testDictWrapperNoDependency(self):
a = tracking.AutoTrackable()
a.d = data_structures.NoDependency({})
a.d[1] = [3]
self.assertEqual([a], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testNonStringKeyNotTrackableValue(self):
a = tracking.AutoTrackable()
a.d = {}
a.d["a"] = [3]
a.d[1] = data_structures.NoDependency([3])
self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testNonAppendNotTrackable(self):
# Non-append mutations (deleting or overwriting values) are OK when the
# values aren't tracked.
a = tracking.AutoTrackable()
a.d = {}
a.d["a"] = [3]
a.d[1] = 3
a.d[1] = 2
self.assertEqual(2, a.d[1])
del a.d[1]
a.d[2] = data_structures.NoDependency(tracking.AutoTrackable())
second = tracking.AutoTrackable()
a.d[2] = data_structures.NoDependency(second)
self.assertIs(second, a.d[2])
self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a))
model = training.Model()
model.sub = a
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
model.load_weights(save_path)
def testPopNoSave(self):
model = training.Model()
model.d = {}
model.d["a"] = []
model.d.pop("a")
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "Unable to save"):
model.save_weights(save_path)
def testExternalModificationNoSave(self):
model = training.Model()
external_reference = {}
model.d = external_reference
external_reference["a"] = []
save_path = os.path.join(self.get_temp_dir(), "ckpt")
with self.assertRaisesRegexp(ValueError, "modified outside the wrapper"):
model.save_weights(save_path)
def testOverwriteCanStillSave(self):
model = training.Model()
model.d = {}
model.d["a"] = {}
model.d["a"] = {}
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
def testIter(self):
model = training.Model()
model.d = {1: 3}
model.d[1] = 3
self.assertEqual([1], list(model.d))
new_dict = {}
# This update() is super tricky. If the dict wrapper subclasses dict,
# CPython will access its storage directly instead of calling any
# methods/properties on the object. So the options are either not to
# subclass dict (in which case update will call normal iter methods, but the
# object won't pass isinstance checks) or to subclass dict and keep that
# storage updated (no shadowing all its methods like ListWrapper).
new_dict.update(model.d)
self.assertEqual({1: 3}, new_dict)
def testListShallowCopy(self):
root = tracking.AutoTrackable()
orig_list = [[1.]]
@ -871,157 +514,13 @@ class MappingTests(test.TestCase):
self.assertIs(first_trace, second_trace)
class HasTuple(training.Model):
def __init__(self):
super(HasTuple, self).__init__()
self.layer_list = (
core.Dense(3), core.Dense(4),
core.Dense(5, kernel_regularizer=math_ops.reduce_sum))
self.layers_with_updates = (normalization.BatchNormalization(),)
def call(self, x):
aggregation = 0.
for l in self.layer_list:
x = l(x)
aggregation += math_ops.reduce_sum(x)
bn, = self.layers_with_updates
return bn(x) / aggregation
class TupleTests(test.TestCase, parameterized.TestCase):
@test_util.run_in_graph_and_eager_modes
def testTracking(self):
model = HasTuple()
output = model(array_ops.ones([32, 2]))
self.assertAllEqual([32, 5], output.shape.as_list())
self.assertLen(model.layers, 4)
self.assertLen(model.layer_list.layers, 3)
six.assertCountEqual(
self,
model.layers,
tuple(model.layer_list.layers) + model.layers_with_updates)
self.assertEqual(3, model.layer_list.layers[0].units)
self.assertEqual(4, model.layer_list.layers[1].units)
self.assertEqual(5, model.layer_list.layers[2].units)
self.assertLen(model._checkpoint_dependencies, 2)
self.assertIs(model.layer_list, model._checkpoint_dependencies[0].ref)
self.assertIs(model.layers_with_updates,
model._checkpoint_dependencies[1].ref)
self.assertLen(
model._checkpoint_dependencies[0].ref._checkpoint_dependencies, 3)
self.evaluate([v.initializer for v in model.variables])
self.evaluate(model.variables[0].assign([[1., 2., 3.], [4., 5., 6.]]))
save_path = os.path.join(self.get_temp_dir(), "ckpt")
model.save_weights(save_path)
self.evaluate(model.variables[0].assign(array_ops.zeros([2, 3])))
model.load_weights(save_path)
self.assertAllEqual([[1., 2., 3.], [4., 5., 6.]],
self.evaluate(model.variables[0]))
v = variables.Variable(1.)
model.var_list = (v,)
self.assertIn(id(v), [id(obj) for obj in model.variables])
self.assertIn(id(v), [id(obj) for obj in model.trainable_variables])
self.assertNotIn(id(v), [id(obj) for obj in model.non_trainable_variables])
self.assertIn(id(model.layer_list[0].trainable_weights[0]),
[id(obj) for obj in model.trainable_weights])
@parameterized.named_parameters(
("Module", module.Module),
("Model", training.Model),
)
def testSubModelTracking(self, module_subclass):
model = module_subclass()
model.v = variables.Variable(1.)
self.assertIn(model.v, model.trainable_variables)
model2 = module_subclass()
model2.m = (model,)
self.assertIn(model.v, model2.trainable_variables)
def testSubSequentialTracking(self):
class _Subclassed(training.Model):
def __init__(self, wrapped):
super(_Subclassed, self).__init__()
self._wrapped = wrapped
def call(self, x):
return self._wrapped(x)
model = sequential.Sequential()
layer = core.Dense(1)
model.add(layer)
model2 = _Subclassed(model)
model2(array_ops.ones([1, 2]))
model2.m = (model,)
self.assertIn(layer.kernel, model2.trainable_weights)
def testJSONSerialization(self):
obj = tracking.AutoTrackable()
obj.l = (1,)
json.dumps(obj.l, default=serialization.get_json_type)
def testUpdatesForwarded(self):
with ops.Graph().as_default():
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertNotEmpty(model.layers_with_updates[0].updates)
self.assertEqual(set(model.layers_with_updates[0].updates),
set(model.updates))
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertEmpty(model.updates)
@test_util.run_in_graph_and_eager_modes
def testLossesForwarded(self):
model = HasTuple()
model_input = array_ops.ones([32, 2])
model(model_input)
self.assertLen(model.losses, 1)
def testModelContainersCompareEqual(self):
class HasEqualContainers(training.Model):
def __init__(self):
super(HasEqualContainers, self).__init__()
self.l1 = ()
self.l2 = ()
model = HasEqualContainers()
first_layer = HasEqualContainers()
model.l1 = (first_layer,)
second_layer = HasEqualContainers()
model.l2 = (second_layer,)
self.assertEqual((first_layer,), model.l1)
d = {model.l1: 1, model.l2: 2}
self.assertEqual(1, d[model.l1])
self.assertEqual(1, d[(first_layer,)])
self.assertEqual(2, d[model.l2])
self.assertEqual(2, d[(second_layer,)])
self.assertEqual([first_layer, second_layer], model.layers)
@test_util.run_in_graph_and_eager_modes
def testTensorConversion(self):
class TupleToTensor(training.Model):
def __init__(self):
super(TupleToTensor, self).__init__()
self.l = (1., 2., 3.)
self.assertAllEqual(
(1., 2., 3.),
self.evaluate(constant_op.constant(TupleToTensor().l)))
self.assertAllEqual(
(1., 2., 3.),
self.evaluate(array_ops.pack(TupleToTensor().l)))
def testNonLayerVariables(self):
v = resource_variable_ops.ResourceVariable([1.])
l = data_structures._TupleWrapper((v,))

View File

@ -25,14 +25,10 @@ import time
import timeit
import numpy as np
import six
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import training
from tensorflow.python.module import module
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
from tensorflow.python.training.tracking import base
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import tracking
from tensorflow.python.training.tracking import util
@ -73,28 +69,6 @@ class InterfaceTests(test.TestCase):
(_, dep_object), = root._checkpoint_dependencies
self.assertIs(duplicate_name_dep, dep_object)
def testNoDependency(self):
root = tracking.AutoTrackable()
hasdep = tracking.AutoTrackable()
root.hasdep = hasdep
nodep = tracking.AutoTrackable()
root.nodep = data_structures.NoDependency(nodep)
self.assertEqual(1, len(root._checkpoint_dependencies))
self.assertIs(root._checkpoint_dependencies[0].ref, root.hasdep)
self.assertIs(root.hasdep, hasdep)
self.assertIs(root.nodep, nodep)
class NoDependencyModel(training.Model):
@base.no_automatic_dependency_tracking
def __init__(self):
super(NoDependencyModel, self).__init__()
self.a = []
self.b = tracking.AutoTrackable()
nodeps = NoDependencyModel()
self.assertEqual([nodeps], util.list_objects(nodeps))
def testRemoveDependency(self):
root = tracking.AutoTrackable()
root.a = tracking.AutoTrackable()
@ -183,43 +157,6 @@ class InterfaceTests(test.TestCase):
with self.assertRaisesRegexp(ValueError, "A list element was replaced"):
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
@test_util.run_in_graph_and_eager_modes
def testDictionariesBasic(self):
a = training.Model()
b = training.Model()
a.attribute = {"b": b}
c = training.Model()
a.attribute["c"] = []
a.attribute["c"].append(c)
a_deps = util.list_objects(a)
self.assertIn(b, a_deps)
self.assertIn(c, a_deps)
self.assertIs(b, a.attribute["b"])
six.assertCountEqual(
self,
["b", "c"],
[dep.name for dep in a.attribute._checkpoint_dependencies])
self.assertEqual([b, c], a.layers)
self.assertEqual([b, c], a.attribute.layers)
self.assertEqual([c], a.attribute["c"].layers)
checkpoint = util.Checkpoint(a=a)
save_path = checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
with self.cached_session():
checkpoint.restore(save_path).assert_consumed().initialize_or_restore()
@test_util.run_in_graph_and_eager_modes
def testNoDepList(self):
a = training.Model()
a.l1 = data_structures.NoDependency([])
a.l1.insert(1, 0)
self.assertTrue(isinstance(a.l1, list))
checkpoint = util.Checkpoint(a=a)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
a.l2 = []
a.l2.insert(1, module.Module())
with self.assertRaisesRegexp(ValueError, "A list element was replaced"):
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
@test_util.run_in_graph_and_eager_modes
def testAssertions(self):
a = tracking.AutoTrackable()

View File

@ -16,25 +16,18 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import weakref
from absl.testing import parameterized
import six
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import adam
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import resource_variable_ops
@ -46,7 +39,6 @@ from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.training import training_util
from tensorflow.python.training.saving import checkpoint_options
from tensorflow.python.training.tracking import base
from tensorflow.python.training.tracking import graph_view
@ -62,44 +54,8 @@ class NonLayerTrackable(tracking.AutoTrackable):
self, name="a_variable", shape=[])
# pylint: disable=not-callable
class MyModel(training.Model):
"""A concrete Model for testing."""
def __init__(self):
super(MyModel, self).__init__()
self._named_dense = core.Dense(1, use_bias=True)
self._second = core.Dense(1, use_bias=False)
# We can still track Trackables which aren't Layers.
self._non_layer = NonLayerTrackable()
def call(self, values):
ret = self._second(self._named_dense(values))
return ret
class InterfaceTests(test.TestCase):
def testLayerDeduplication(self):
model = training.Model()
layer_one = core.Dense(1)
layer_two = core.Dense(1)
model.other_path = [layer_one, layer_two]
model.l2 = layer_two
model.l1 = layer_one
self.assertEqual([layer_one, layer_two], model.layers)
def testSaveWithOnlyKerasSession(self):
with ops.Graph().as_default():
inp = input_layer.Input([1])
dense = core.Dense(1)(inp)
model = training.Model(inp, dense)
model.compile(optimizer="sgd", loss="mse")
model.fit([1.], [2.])
checkpoint = trackable_utils.Checkpoint(model=model)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testAddVariable(self):
obj = NonLayerTrackable()
@ -184,22 +140,6 @@ class InterfaceTests(test.TestCase):
self.assertEqual(dtypes.float64, v2.dtype)
self.assertAllEqual([1., 1., 1.], self.evaluate(v2))
def testObjectMetadata(self):
with context.eager_mode():
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
dense = core.Dense(1)
checkpoint = trackable_utils.Checkpoint(dense=dense)
dense(constant_op.constant([[1.]]))
save_path = checkpoint.save(checkpoint_prefix)
objects = trackable_utils.object_metadata(save_path)
all_variable_names = []
for obj in objects.nodes:
for attribute in obj.attributes:
all_variable_names.append(attribute.full_name)
self.assertIn("dense/kernel", all_variable_names)
def testNotTrackable(self):
class CallsFunctionalStuff(
@ -268,100 +208,6 @@ class _OwnsMirroredVariables(base.Trackable):
class CheckpointingTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testNamingWithOptimizer(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
# A nuisance Model using the same optimizer. Its slot variables should not
# go in the checkpoint, since it is never depended on.
other_model = MyModel()
optimizer = adam.Adam(0.001)
step = training_util.get_or_create_global_step()
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model, step=step)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = control_flow_ops.group(
optimizer.apply_gradients(zip(gradients, variables)),
step.assign_add(1))
with backprop.GradientTape() as tape:
loss = other_model(input_value)
variables = other_model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
named_variables, serialized_graph, _ = graph_view.ObjectGraphView(
root_trackable).serialize_object_graph()
expected_slot_keys = (
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v",
)
expected_checkpoint_names = (
# Created in the root node, so no prefix.
"step",
"model/_second/kernel",
"model/_named_dense/kernel",
"model/_named_dense/bias",
# non-Layer dependency of the model
"model/_non_layer/a_variable",
"optimizer/learning_rate",
"optimizer/beta_1",
"optimizer/beta_2",
"optimizer/iter",
"optimizer/decay",
) + expected_slot_keys
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
expected_checkpoint_names = [
name + suffix for name in expected_checkpoint_names]
named_variables = {v.name: v for v in named_variables}
six.assertCountEqual(self, expected_checkpoint_names,
named_variables.keys())
# Check that we've mapped to the right variable objects (not exhaustive)
self.assertEqual(
"global_step",
named_variables["step" + suffix].full_name)
self.assertEqual(
"my_model/dense_1/kernel",
named_variables["model/_second/kernel" + suffix].full_name)
self.assertEqual(
"my_model/dense/kernel",
named_variables["model/_named_dense/kernel" + suffix].full_name)
self.assertEqual("Adam/beta_1",
named_variables["optimizer/beta_1" + suffix].full_name)
self.assertEqual("Adam/beta_2",
named_variables["optimizer/beta_2" + suffix].full_name)
# Spot check the generated protocol buffers.
self.assertEqual("optimizer",
serialized_graph.nodes[0].children[1].local_name)
optimizer_node = serialized_graph.nodes[serialized_graph.nodes[0].children[
1].node_id]
children = [node.local_name for node in optimizer_node.children]
six.assertCountEqual(
self,
# hyper variable dependencies
["beta_1", "beta_2", "iter", "decay", "learning_rate"],
children)
serialized_slot_keys = []
for slot in optimizer_node.slot_variables:
for attribute in (
serialized_graph.nodes[slot.slot_variable_node_id].attributes):
serialized_slot_keys.append(attribute.checkpoint_key)
six.assertCountEqual(
self,
[key + suffix for key in expected_slot_keys],
serialized_slot_keys)
@test_util.run_in_graph_and_eager_modes
def testMoreComplexSaveableReturned(self):
v = _OwnsMirroredVariables()
@ -432,174 +278,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
if op.type in ("SaveV2", "RestoreV2"):
self.assertEqual(localhost, op.device)
@test_util.run_in_graph_and_eager_modes
def testSaveRestore(self):
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.assertFalse(root_trackable.save_counter.trainable)
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
prefix = os.path.join(self.get_temp_dir(), "ckpt")
self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.]))
m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m")
self.evaluate(state_ops.assign(m_bias_slot, [1.5]))
save_path = root_trackable.save(file_prefix=prefix)
self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.]))
self.evaluate(state_ops.assign(root_trackable.save_counter, 3))
optimizer_variables = self.evaluate(
sorted(optimizer.variables(), key=lambda v: v.name))
self.evaluate(state_ops.assign(m_bias_slot, [-2.]))
# Immediate restoration
status = root_trackable.restore(save_path=save_path).assert_consumed()
status.run_restore_ops()
self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1]))
self.assertAllEqual(1, self.evaluate(root_trackable.save_counter))
self.assertAllEqual([1.5], self.evaluate(m_bias_slot))
if not context.executing_eagerly():
return # Restore-on-create is only supported when executing eagerly
on_create_model = MyModel()
on_create_optimizer = adam.Adam(0.001)
on_create_root = trackable_utils.Checkpoint(
optimizer=on_create_optimizer, model=on_create_model)
# Deferred restoration
status = on_create_root.restore(save_path=save_path)
status.assert_nontrivial_match()
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
on_create_model(constant_op.constant([[3.]])) # create variables
self.assertAllEqual(1, self.evaluate(on_create_root.save_counter))
self.assertAllEqual([42.],
self.evaluate(
on_create_model._named_dense.variables[1]))
on_create_m_bias_slot = on_create_optimizer.get_slot(
on_create_model._named_dense.variables[1], "m")
status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaises(AssertionError):
status.assert_consumed()
# Optimizer slot variables are created when the original variable is
# restored.
self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot))
dummy_var = resource_variable_ops.ResourceVariable([1.])
on_create_optimizer.minimize(loss=dummy_var.read_value,
var_list=[dummy_var])
status.assert_existing_objects_matched()
status.assert_consumed()
self.assertAllEqual(
optimizer_variables,
# Creation order is different, so .variables() needs to be re-sorted.
self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name)))
# TODO(allenl): Debug garbage created by this test in python3.
def testDeferredRestorationUsageEager(self):
"""An idiomatic eager execution example."""
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
root.restore(checkpoint_management.latest_checkpoint(
checkpoint_directory))
for _ in range(num_training_steps):
# TODO(allenl): Use a Dataset and serialize/checkpoint it.
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
root.optimizer.iterations.numpy())
def testUsageGraph(self):
"""Expected usage when graph building."""
with context.graph_mode():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default():
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.CheckpointV1(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
with self.session(graph=ops.get_default_graph()) as session:
status = root.restore(save_path=checkpoint_path)
status.initialize_or_restore(session=session)
if checkpoint_path is None:
self.assertEqual(0, training_continuation)
with self.assertRaises(AssertionError):
status.assert_consumed()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
else:
status.assert_consumed()
status.assert_existing_objects_matched()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix, session=session)
self.assertEqual((training_continuation + 1) * num_training_steps,
session.run(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
session.run(root.save_counter))
@test_util.run_in_graph_and_eager_modes
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
def _train_fn(model, input_value):
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
manager = checkpoint_management.CheckpointManager(
root, checkpoint_directory, max_to_keep=1)
status = root.restore(save_path=manager.latest_checkpoint)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(_train_fn, model, input_value)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
manager.save()
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
@test_util.run_in_graph_and_eager_modes
def testFreezing(self):
with test_util.use_gpu():
@ -656,31 +334,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
self.fail("%s should have suffix %s" % (path, expected_suffix))
self.evaluate(step.assign_add(2))
def testPartialRestoreWarningObject(self):
with context.eager_mode():
optimizer = adam.Adam(0.0)
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.),
optimizer=optimizer)
# Create a slot variable to save
optimizer.minimize(original_root.v1.read_value, [original_root.v1])
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
weak_v1 = weakref.ref(partial_root.v1)
partial_root.restore(save_path)
self.assertEqual(2., partial_root.v1.numpy())
with test.mock.patch.object(logging, "warning") as mock_log:
del partial_root
self.assertIsNone(weak_partial_root())
self.assertIsNone(weak_v1())
messages = str(mock_log.call_args_list)
self.assertIn("(root).v2'", messages)
self.assertIn("(root).optimizer's state 'm' for (root).v1", messages)
self.assertNotIn("(root).v1'", messages)
self.assertIn("expect_partial()", messages)
def testPartialRestoreWarningAttribute(self):
with context.eager_mode():
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
@ -734,49 +387,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
self.assertIsNone(weak_v1())
self.assertEmpty(mock_log.call_args_list)
# pylint: disable=cell-var-from-loop
@test_util.run_in_graph_and_eager_modes
@test_util.run_v1_only("b/120545219")
def testWithDefun(self):
num_training_steps = 2
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
# Don't actually train so we can test variable values
optimizer = adam.Adam(0.)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
def train_fn():
@def_function.function
def _call_model(x):
return model(x)
with backprop.GradientTape() as tape:
loss = _call_model(constant_op.constant([[3.]]))
gradients = tape.gradient(loss, model.variables)
return optimizer.apply_gradients(zip(gradients, model.variables))
if not context.executing_eagerly():
train_fn = functools.partial(
self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
if training_continuation > 0:
status.assert_consumed()
self.assertAllClose([[42.]], self.evaluate(model.variables[0]))
else:
self.evaluate(model.variables[0].assign([[42.]]))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
# pylint: enable=cell-var-from-loop
def _get_checkpoint_name(self, name):
root = tracking.AutoTrackable()
trackable_utils.add_variable(
@ -819,35 +429,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
self.assertEqual("..ATTRIBUTES/a/.ATTRIBUTES/VARIABLE_VALUE",
named_variable.name)
def testAnonymousVarsInInit(self):
class Model(training.Model):
def __init__(self):
super(Model, self).__init__()
self.w = resource_variable_ops.ResourceVariable(0.0)
self.b = resource_variable_ops.ResourceVariable(0.0)
self.vars = [self.w, self.b]
def call(self, x):
return x * self.w + self.b
with context.eager_mode():
model = Model()
optimizer = adam.Adam(learning_rate=0.05)
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = trackable_utils.Checkpoint(
model=model, optimizer=optimizer)
for _ in range(2):
checkpoint.save(checkpoint_prefix)
with backprop.GradientTape() as tape:
loss = (constant_op.constant(1.)
- model(constant_op.constant(1.))) ** 2
grad = tape.gradient(loss, model.vars)
optimizer.apply_gradients(
[(g, v) for g, v in zip(grad, model.vars)])
@test_util.run_in_graph_and_eager_modes
def testLateDependencyTracking(self):
@ -909,72 +490,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
status.run_restore_ops()
self.assertEqual(-14., self.evaluate(loaded_dep_after_var.dep.var))
@test_util.run_in_graph_and_eager_modes
def testDeferredSlotRestoration(self):
checkpoint_directory = self.get_temp_dir()
root = trackable_utils.Checkpoint()
root.var = trackable_utils.add_variable(
root, name="var", initializer=0.)
optimizer = adam.Adam(0.1)
variables = [root.var]
gradients = [1.]
train_op = optimizer.apply_gradients(zip(gradients, variables))
# Note that `optimizer` has not been added as a dependency of
# `root`. Create a one-off grouping so that slot variables for `root.var`
# get initialized too.
self.evaluate(trackable_utils.gather_initializers(
trackable_utils.Checkpoint(root=root, optimizer=optimizer)))
self.evaluate(train_op)
self.evaluate(state_ops.assign(root.var, 12.))
no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots"))
root.optimizer = optimizer
self.evaluate(state_ops.assign(root.var, 13.))
self.evaluate(state_ops.assign(
optimizer.get_slot(slot_name="m", var=root.var),
14.))
slots_path = root.save(os.path.join(checkpoint_directory, "with_slots"))
new_root = trackable_utils.Checkpoint()
# Load the slot-containing checkpoint (deferred), then immediately overwrite
# the non-slot variable (also deferred).
slot_status = new_root.restore(slots_path)
no_slot_status = new_root.restore(no_slots_path)
with self.assertRaises(AssertionError):
no_slot_status.assert_consumed()
new_root.var = trackable_utils.add_variable(
new_root, name="var", shape=[])
no_slot_status.assert_consumed()
no_slot_status.run_restore_ops()
self.assertEqual(12., self.evaluate(new_root.var))
new_root.optimizer = adam.Adam(0.1)
slot_status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaisesRegexp(AssertionError, "Unresolved object"):
slot_status.assert_consumed()
self.assertEqual(12., self.evaluate(new_root.var))
if context.executing_eagerly():
# Slot variables are only created with restoring initializers when
# executing eagerly.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
else:
# Slot variables are not created eagerly when graph building.
with self.assertRaises(KeyError):
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)
variables = [new_root.var]
gradients = [1.]
train_op = new_root.optimizer.apply_gradients(zip(gradients, variables))
# The slot variable now exists; restore() didn't create it, but we should
# now have a restore op for it.
slot_status.run_restore_ops()
if not context.executing_eagerly():
# The train op hasn't run when graph building, so the slot variable has
# its restored value. It has run in eager, so the value will be different.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
self.evaluate(train_op)
slot_status.assert_consumed()
@test_util.run_in_graph_and_eager_modes
def testOverlappingRestores(self):
checkpoint_directory = self.get_temp_dir()
@ -1154,24 +669,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
status.run_restore_ops()
self.assertEqual(4., self.evaluate(recreated_var1))
def testManySavesGraph(self):
"""Saves after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
obj.save(checkpoint_prefix)
graph.finalize()
obj.save(checkpoint_prefix)
@test_util.run_in_graph_and_eager_modes
def testCheckpointState(self):
# No checkpoints are deleted by default
@ -1237,146 +734,6 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
self.assertEqual(1, self.evaluate(checkpoint.var_1))
self.assertEqual(0, self.evaluate(checkpoint.var_0))
def testManyRestoresGraph(self):
"""Restores after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
save_path = obj.save(checkpoint_prefix)
obj.restore(save_path)
graph.finalize()
obj.restore(save_path)
@test_util.run_in_graph_and_eager_modes
def test_sequential(self):
model = sequential.Sequential()
checkpoint = trackable_utils.Checkpoint(model=model)
model.add(core.Dense(4))
second_dense = core.Dense(5)
model.add(second_dense)
model(constant_op.constant([[1.]]))
checkpoint.restore(None).initialize_or_restore()
self.evaluate(second_dense.bias.assign(
constant_op.constant([1., 2., 3., 4., 5.])))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = checkpoint.save(checkpoint_prefix)
self.evaluate(second_dense.bias.assign(
constant_op.constant([5., 6., 7., 8., 9.])))
checkpoint.restore(save_path).assert_consumed().run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.], self.evaluate(second_dense.bias))
deferred_sequential = sequential.Sequential()
deferred_sequential_checkpoint = trackable_utils.Checkpoint(
model=deferred_sequential)
status = deferred_sequential_checkpoint.restore(save_path)
deferred_sequential.add(core.Dense(4))
deferred_second_dense = core.Dense(5)
deferred_sequential.add(deferred_second_dense)
deferred_sequential(constant_op.constant([[1.]]))
status.run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.],
self.evaluate(deferred_second_dense.bias))
@test_util.run_in_graph_and_eager_modes
def test_initialize_if_not_restoring(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
optimizer_only_prefix = os.path.join(checkpoint_directory, "opt")
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
model=model) # Do not save the optimizer with the checkpoint.
optimizer_checkpoint = trackable_utils.Checkpoint(
optimizer=optimizer)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
def train_fn():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
# TODO(tanzheny): Add hyper variables to .variables(), and set them with
# set_weights etc.
variables_not_in_the_variables_property = [
obj for obj in optimizer._hyper.values()
if isinstance(obj, variables_lib.Variable)]
self.evaluate([v.initializer for v
in optimizer.variables()
+ variables_not_in_the_variables_property])
train_fn()
model_save_path = root.save(file_prefix=checkpoint_prefix)
self.evaluate(optimizer.beta_1.assign(42.))
optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix)
del train_fn
# Restore into a graph with the optimizer
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
status = root.restore(save_path=model_save_path)
input_value = constant_op.constant([[3.]])
def train_fn1():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn1 = functools.partial(self.evaluate, train_fn1())
status.initialize_or_restore()
train_fn1()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
del train_fn1
# Make sure initialization doesn't clobber later restores
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001, beta_1=1.0)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
opt_root = trackable_utils.Checkpoint(
optimizer=optimizer)
status = root.restore(save_path=model_save_path)
init_only_optimizer_status = opt_root.restore(save_path=None)
optimizer_status = opt_root.restore(save_path=optimizer_save_path)
input_value = constant_op.constant([[3.]])
def train_fn2():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn2 = functools.partial(self.evaluate, train_fn2())
optimizer_status.run_restore_ops()
status.initialize_or_restore()
init_only_optimizer_status.initialize_or_restore()
train_fn2()
self.assertEqual(42., self.evaluate(optimizer.beta_1))
@test_util.run_in_graph_and_eager_modes
def test_restore_after_adding_empty_trackable_data_structure(self):
model = NonLayerTrackable()
@ -1439,75 +796,8 @@ class CheckpointingTests(parameterized.TestCase, test.TestCase):
self.assertAllClose(self.evaluate(load_checkpoint.b), {"a": 2, "b": 3})
class _ManualScope(tracking.AutoTrackable):
def __call__(self):
with variable_scope.variable_scope("ManualScope") as vs:
self.variable_scope = vs
with trackable_utils.capture_dependencies(template=self):
return self._build()
def _build(self):
return variable_scope.get_variable(name="in_manual_scope", shape=[])
class TemplateTests(parameterized.TestCase, test.TestCase):
@test_util.run_in_graph_and_eager_modes
def test_trackable_save_restore(self):
def _templated():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
v2 = variable_scope.get_variable(
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
manual = _ManualScope()
return v, v + 1., v2, manual, manual()
save_template = template.make_template("s1", _templated)
v1_save, _, v2_save, manual_scope, manual_scope_v = save_template()
six.assertCountEqual(
self,
[id(v1_save), id(v2_save), id(manual_scope),
id(manual_scope_v), id(save_template)],
map(id, trackable_utils.list_objects(save_template)))
manual_dep, = manual_scope._checkpoint_dependencies
self.assertEqual("in_manual_scope", manual_dep.name)
self.assertIs(manual_scope_v, manual_dep.ref)
optimizer = adam.Adam(0.0)
save_root = trackable_utils.Checkpoint(
my_template=save_template, optimizer=optimizer)
optimizer.minimize(v1_save.read_value,
var_list=[v1_save])
self.evaluate([v.initializer for v in save_template.variables])
optimizer_variables = optimizer.variables() + list(
optimizer._hyper.values())
self.evaluate([v.initializer for v in optimizer_variables])
self.evaluate(v1_save.assign([12.]))
self.evaluate(v2_save.assign([14.]))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = save_root.save(checkpoint_prefix)
load_template = template.make_template("s2", _templated)
load_optimizer = adam.Adam(0.0)
load_root = trackable_utils.Checkpoint(
my_template=load_template, optimizer=load_optimizer)
status = load_root.restore(save_path)
var, var_plus_one, var2, _, _ = load_template()
load_optimizer.minimize(var.read_value, var_list=[var])
self.assertLen(load_template._checkpoint_dependencies, 3)
self.assertEqual("v", load_template._checkpoint_dependencies[0].name)
self.assertEqual("v2", load_template._checkpoint_dependencies[1].name)
self.assertEqual("ManualScope",
load_template._checkpoint_dependencies[2].name)
status.assert_consumed().run_restore_ops()
self.assertAllEqual([12.], self.evaluate(var))
self.assertAllEqual([13.], self.evaluate(var_plus_one))
self.assertAllEqual([14.], self.evaluate(var2))
@test_util.run_in_graph_and_eager_modes
def test_trackable_save_restore_nested(self):
@ -1554,157 +844,6 @@ class TemplateTests(parameterized.TestCase, test.TestCase):
self.assertAllEqual([25.], self.evaluate(v3))
class CheckpointCompatibilityTests(test.TestCase):
def _initialized_model(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
# A regular variable, a slot variable, and a non-slot Optimizer variable
# with known values to check when loading.
self.evaluate(model._named_dense.bias.assign([1.]))
self.evaluate(optimizer.get_slot(
var=model._named_dense.bias, slot_name="m").assign([2.]))
self.evaluate(optimizer.beta_1.assign(3.))
return root_trackable
def _set_sentinels(self, root_trackable):
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")
.assign([102.]))
self.evaluate(root_trackable.optimizer.beta_1.assign(103.))
def _check_sentinels(self, root_trackable):
self.assertAllEqual(
[1.], self.evaluate(root_trackable.model._named_dense.bias))
self.assertAllEqual([2.], self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")))
self.assertAllEqual(3.,
self.evaluate(root_trackable.optimizer.beta_1))
def _write_name_based_checkpoint(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph) as session:
root = self._initialized_model()
name_saver = saver_lib.Saver()
return name_saver.save(
sess=session,
save_path=checkpoint_prefix,
global_step=root.optimizer.iterations)
@test_util.run_in_graph_and_eager_modes
def testLoadFromNameBasedSaver(self):
"""Save a name-based checkpoint, load it using the object-based API."""
with test_util.device(use_gpu=True):
save_path = self._write_name_based_checkpoint()
root = self._initialized_model()
self._set_sentinels(root)
with self.assertRaises(AssertionError):
self._check_sentinels(root)
object_saver = trackable_utils.TrackableSaver(
graph_view.ObjectGraphView(root))
self._set_sentinels(root)
status = object_saver.restore(save_path)
if context.executing_eagerly():
self._check_sentinels(root)
if context.executing_eagerly():
status.assert_consumed()
status.assert_existing_objects_matched()
status.assert_nontrivial_match()
else:
# When graph building, we haven't read any keys, so we don't know
# whether the restore will be complete.
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_consumed()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_existing_objects_matched()
with self.assertRaisesRegexp(AssertionError, "not restored"):
status.assert_nontrivial_match()
status.run_restore_ops()
self._check_sentinels(root)
self._set_sentinels(root)
status = object_saver.restore(save_path)
status.initialize_or_restore()
status.assert_nontrivial_match()
self._check_sentinels(root)
# Check that there is no error when keys are missing from the name-based
# checkpoint.
root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable([1.])
status = object_saver.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
def testSaveGraphLoadEager(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.eager_mode():
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed()
self._check_sentinels(root)
def testSaveEagerLoadGraph(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.eager_mode():
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed().run_restore_ops()
self._check_sentinels(root)
def testIgnoreSaveCounter(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with self.cached_session() as session:
# Create and save a model using Saver() before using a Checkpoint. This
# generates a snapshot without the Checkpoint's `save_counter`.
model = sequential.Sequential()
model.add(core.Flatten(input_shape=(1,)))
model.add(core.Dense(1))
name_saver = saver_lib.Saver(model.trainable_variables)
save_path = name_saver.save(
sess=session, save_path=checkpoint_prefix, global_step=1)
# Checkpoint.restore must successfully load that checkpoint.
ckpt = trackable_utils.Checkpoint(model=model)
status = ckpt.restore(save_path)
status.assert_existing_objects_matched()
# It should, however, refuse to load a checkpoint where an unrelated
# `save_counter` variable is missing.
model.layers[1].var = variables_lib.Variable(0., name="save_counter")
status = ckpt.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()