generalize BuildGradModel

This commit is contained in:
Võ Văn Nghĩa 2021-01-15 03:36:51 +07:00
parent 1b03b99346
commit 1697abe35d
3 changed files with 85 additions and 64 deletions

View File

@ -106,25 +106,20 @@ void CheckTensorValue(AbstractTensorHandle* t, absl::Span<const float> manuals,
delete[] danalytical;
}
Model BuildGradModel(Model ops, size_t num_inputs, string ops_name,
GradientFunctionFactory gradient_function_factory) {
return [num_inputs, forward_ops = std::move(ops),
forward_name = std::move(ops_name),
gradient_factory = std::move(gradient_function_factory)](
Model BuildGradModel(Model forward, GradientRegistry registry) {
return [forward_model = std::move(forward),
grad_registry = std::move(registry)](
AbstractContext* ctx,
absl::Span<AbstractTensorHandle* const> inputs,
absl::Span<AbstractTensorHandle*> outputs) -> Status {
GradientRegistry registry;
TF_RETURN_IF_ERROR(registry.Register(forward_name, gradient_factory));
Tape tape(/*persistent=*/false);
for (size_t i{}; i < num_inputs; ++i) {
for (size_t i{}; i < inputs.size(); ++i) {
tape.Watch(inputs[i]);
}
std::vector<AbstractTensorHandle*> temp_outputs(1);
AbstractContextPtr tape_ctx(new TapeContext(ctx, &tape, registry));
AbstractContextPtr tape_ctx(new TapeContext(ctx, &tape, grad_registry));
TF_RETURN_IF_ERROR(
forward_ops(tape_ctx.get(), inputs, absl::MakeSpan(temp_outputs)));
forward_model(tape_ctx.get(), inputs, absl::MakeSpan(temp_outputs)));
TF_RETURN_IF_ERROR(tape.ComputeGradient(ctx, /*targets=*/temp_outputs,
/*sources=*/inputs,

View File

@ -30,8 +30,7 @@ void CompareNumericalAndAutodiffGradients(
void CheckTensorValue(AbstractTensorHandle* t, absl::Span<const float> manuals,
absl::Span<const int64_t> dims, double abs_error = 1e-2);
Model BuildGradModel(Model ops, size_t num_inputs, string ops_name,
GradientFunctionFactory gradient_function_factory);
Model BuildGradModel(Model forward, GradientRegistry registry);
} // namespace internal
} // namespace gradients

View File

@ -85,8 +85,8 @@ class CppGradients
void SetUp() override {
TF_StatusPtr status(TF_NewStatus());
TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
Status s = StatusFromTF_Status(status.get());
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = StatusFromTF_Status(status.get());
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
{
AbstractContext* ctx_raw = nullptr;
@ -103,6 +103,8 @@ class CppGradients
}
AbstractContextPtr ctx_;
GradientRegistry registry_;
Status status_;
public:
bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; }
@ -113,21 +115,24 @@ TEST_P(CppGradients, TestAddGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
AbstractTensorHandlePtr y;
{
AbstractTensorHandle* y_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
y.reset(y_raw);
}
status_ = registry_.Register("AddV2", AddRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
AddModel, BuildGradModel(AddModel, 2, "AddV2", AddRegisterer), ctx_.get(),
AddModel, BuildGradModel(AddModel, registry_), ctx_.get(),
{x.get(), y.get()}, UseFunction()));
}
@ -135,14 +140,17 @@ TEST_P(CppGradients, TestExpGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
status_ = registry_.Register("Exp", ExpRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
ExpModel, BuildGradModel(ExpModel, 1, "Exp", ExpRegisterer), ctx_.get(),
{x.get()}, UseFunction()));
ExpModel, BuildGradModel(ExpModel, registry_), ctx_.get(), {x.get()},
UseFunction()));
}
TEST_P(CppGradients, TestMatMulGrad) {
@ -151,9 +159,9 @@ TEST_P(CppGradients, TestMatMulGrad) {
AbstractTensorHandlePtr A;
{
AbstractTensorHandle* A_raw;
Status s =
status_ =
TestTensorHandleWithDimsFloat(ctx_.get(), A_vals, A_dims, 2, &A_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
A.reset(A_raw);
}
@ -162,12 +170,15 @@ TEST_P(CppGradients, TestMatMulGrad) {
AbstractTensorHandlePtr B;
{
AbstractTensorHandle* B_raw;
Status s =
status_ =
TestTensorHandleWithDimsFloat(ctx_.get(), B_vals, B_dims, 2, &B_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
B.reset(B_raw);
}
status_ = registry_.Register("MatMul", MatMulRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
for (bool transpose_a : {false, true}) {
for (bool transpose_b : {false, true}) {
Model MatMulModel =
@ -182,9 +193,8 @@ TEST_P(CppGradients, TestMatMulGrad) {
// well with `MatMul` and remove `TestMatMul*` in
// `mnist_gradients_test` when done.
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
MatMulModel,
BuildGradModel(MatMulModel, 2, "MatMul", MatMulRegisterer),
ctx_.get(), {A.get(), B.get()}, UseFunction(), /*abs_error*/ 0.4));
MatMulModel, BuildGradModel(MatMulModel, registry_), ctx_.get(),
{A.get(), B.get()}, UseFunction(), /*abs_error*/ 0.4));
}
}
}
@ -193,49 +203,58 @@ TEST_P(CppGradients, TestSqrtGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
status_ = registry_.Register("Sqrt", SqrtRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
SqrtModel, BuildGradModel(SqrtModel, 1, "Sqrt", SqrtRegisterer),
ctx_.get(), {x.get()}, UseFunction()));
SqrtModel, BuildGradModel(SqrtModel, registry_), ctx_.get(), {x.get()},
UseFunction()));
}
TEST_P(CppGradients, TestNegGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
status_ = registry_.Register("Neg", NegRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
NegModel, BuildGradModel(NegModel, 1, "Neg", NegRegisterer), ctx_.get(),
{x.get()}, UseFunction()));
NegModel, BuildGradModel(NegModel, registry_), ctx_.get(), {x.get()},
UseFunction()));
}
TEST_P(CppGradients, TestSubGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
AbstractTensorHandlePtr y;
{
AbstractTensorHandle* y_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
y.reset(y_raw);
}
status_ = registry_.Register("Sub", SubRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
SubModel, BuildGradModel(SubModel, 2, "Sub", SubRegisterer), ctx_.get(),
SubModel, BuildGradModel(SubModel, registry_), ctx_.get(),
{x.get(), y.get()}, UseFunction()));
}
@ -243,21 +262,24 @@ TEST_P(CppGradients, TestMulGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
AbstractTensorHandlePtr y;
{
AbstractTensorHandle* y_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
y.reset(y_raw);
}
status_ = registry_.Register("Mul", MulRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
MulModel, BuildGradModel(MulModel, 2, "Mul", MulRegisterer), ctx_.get(),
MulModel, BuildGradModel(MulModel, registry_), ctx_.get(),
{x.get(), y.get()}, UseFunction()));
}
@ -265,33 +287,38 @@ TEST_P(CppGradients, TestLog1pGrad) {
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
status_ = registry_.Register("Log1p", Log1pRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
Log1pModel, BuildGradModel(Log1pModel, 1, "Log1p", Log1pRegisterer),
ctx_.get(), {x.get()}, UseFunction()));
Log1pModel, BuildGradModel(Log1pModel, registry_), ctx_.get(), {x.get()},
UseFunction()));
}
TEST_P(CppGradients, TestDivNoNanGrad) {
auto DivNoNanGradModel =
BuildGradModel(DivNoNanModel, 2, "DivNoNan", DivNoNanRegisterer);
status_ = registry_.Register("DivNoNan", DivNoNanRegisterer);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
auto DivNoNanGradModel = BuildGradModel(DivNoNanModel, registry_);
AbstractTensorHandlePtr x;
{
AbstractTensorHandle* x_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
x.reset(x_raw);
}
AbstractTensorHandlePtr y;
{
AbstractTensorHandle* y_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 2.0f, &y_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
y.reset(y_raw);
}
@ -303,14 +330,14 @@ TEST_P(CppGradients, TestDivNoNanGrad) {
AbstractTensorHandlePtr z;
{
AbstractTensorHandle* z_raw = nullptr;
Status s = TestScalarTensorHandle(ctx_.get(), 0.0f, &z_raw);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = TestScalarTensorHandle(ctx_.get(), 0.0f, &z_raw);
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
z.reset(z_raw);
}
std::vector<AbstractTensorHandle*> outputs(2);
auto s = RunModel(DivNoNanGradModel, ctx_.get(), {x.get(), z.get()},
absl::MakeSpan(outputs), UseFunction());
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
status_ = RunModel(DivNoNanGradModel, ctx_.get(), {x.get(), z.get()},
absl::MakeSpan(outputs), UseFunction());
ASSERT_EQ(errors::OK, status_.code()) << status_.error_message();
ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], {0.0f}, /*dims*/ {},
/*abs_error*/ 0));
ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], {0.0f}, /*dims*/ {},