Change some const declarations to constexpr
PiperOrigin-RevId: 307482476 Change-Id: Ibe6ddc3889e065bfb19aae4b057590a2c2ab3331
This commit is contained in:
parent
e885af2941
commit
14a5a76e76
@ -353,7 +353,7 @@ class CheckNumericsV2Op<GPUDevice, T> : public CheckNumericsOp<GPUDevice, T> {
|
||||
}
|
||||
}
|
||||
|
||||
static const int abnormal_detected_size = 3;
|
||||
static constexpr int abnormal_detected_size = 3;
|
||||
};
|
||||
|
||||
#endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
||||
|
@ -793,7 +793,7 @@ struct base {
|
||||
// operation. Each functor for which this is enabled increases the
|
||||
// code size, so by default this is disabled for binary functors and
|
||||
// is enabled on a per-op basis as needed.
|
||||
static const bool use_bcast_optimization = false;
|
||||
static constexpr bool use_bcast_optimization = false;
|
||||
|
||||
// operator() has the signature:
|
||||
// out_type operator()(in_type in0, in_type in1 ...)
|
||||
@ -811,24 +811,24 @@ struct base {
|
||||
|
||||
// Whether the functor can error out. Currently applies only to integer
|
||||
// div and mod.
|
||||
static const bool has_errors = false;
|
||||
static constexpr bool has_errors = false;
|
||||
};
|
||||
|
||||
// For now, we only apply certain speed optimization for
|
||||
// float/double's broadcast binary op.
|
||||
template <typename T>
|
||||
struct use_bcast_optimization {
|
||||
static const bool value = false;
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct use_bcast_optimization<float> {
|
||||
static const bool value = true;
|
||||
static constexpr bool value = true;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct use_bcast_optimization<double> {
|
||||
static const bool value = true;
|
||||
static constexpr bool value = true;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -1007,17 +1007,17 @@ struct rint : base<T, Eigen::internal::scalar_rint_op<T>> {};
|
||||
|
||||
template <typename T>
|
||||
struct add : base<T, Eigen::internal::scalar_sum_op<T>> {
|
||||
static const bool use_bcast_optimization = true;
|
||||
static constexpr bool use_bcast_optimization = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct sub : base<T, Eigen::internal::scalar_difference_op<T>> {
|
||||
static const bool use_bcast_optimization = true;
|
||||
static constexpr bool use_bcast_optimization = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct mul : base<T, Eigen::internal::scalar_product_op<T>> {
|
||||
static const bool use_bcast_optimization = true;
|
||||
static constexpr bool use_bcast_optimization = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -1029,7 +1029,7 @@ struct div : base<T, Eigen::internal::scalar_quotient_op<T>> {};
|
||||
template <typename T>
|
||||
struct safe_div : base<T, Eigen::internal::safe_div_or_mod_op<
|
||||
T, Eigen::internal::scalar_quotient_op<T>>> {
|
||||
static const bool has_errors = true;
|
||||
static constexpr bool has_errors = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -1044,7 +1044,7 @@ struct mod : base<T, Eigen::internal::scalar_mod2_op<T>> {};
|
||||
template <typename T>
|
||||
struct safe_mod : base<T, Eigen::internal::safe_div_or_mod_op<
|
||||
T, Eigen::internal::scalar_mod2_op<T>>> {
|
||||
static const bool has_errors = true;
|
||||
static constexpr bool has_errors = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -1053,7 +1053,7 @@ struct floor_fmod : base<T, Eigen::internal::google_floor_fmod<T>> {};
|
||||
template <typename T>
|
||||
struct safe_floor_mod : base<T, Eigen::internal::safe_div_or_mod_op<
|
||||
T, Eigen::internal::google_floor_mod<T>>> {
|
||||
static const bool has_errors = true;
|
||||
static constexpr bool has_errors = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -1062,7 +1062,7 @@ struct floor_div : base<T, Eigen::internal::google_floor_div<T>> {};
|
||||
template <typename T>
|
||||
struct safe_floor_div : base<T, Eigen::internal::safe_div_or_mod_op<
|
||||
T, Eigen::internal::google_floor_div<T>>> {
|
||||
static const bool has_errors = true;
|
||||
static constexpr bool has_errors = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -1073,7 +1073,7 @@ struct pow : base<T, Eigen::internal::scalar_pow_op<T, T>> {};
|
||||
|
||||
template <typename T>
|
||||
struct safe_pow : base<T, Eigen::internal::safe_scalar_binary_pow_op<T, T>> {
|
||||
static const bool has_errors = true;
|
||||
static constexpr bool has_errors = true;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -185,7 +185,7 @@ struct CopyFilterDepth {
|
||||
template <typename T>
|
||||
struct ComputeFilterRangeTransform {
|
||||
typedef typename Eigen::internal::packet_traits<T>::type Packet;
|
||||
static const int64 kPacketSize = (sizeof(Packet) / sizeof(T));
|
||||
static constexpr int64 kPacketSize = (sizeof(Packet) / sizeof(T));
|
||||
|
||||
typedef Eigen::Map<
|
||||
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
|
||||
|
@ -270,10 +270,10 @@ class TensorContractionBlocking<float, float, float, StorageIndex,
|
||||
static constexpr float kScaleN = 1.0;
|
||||
|
||||
// Mkldnn Avx/Avx2/Avx512 unroll factors are: 8/16/48.
|
||||
static const StorageIndex kUnrollM = 48;
|
||||
static constexpr StorageIndex kUnrollM = 48;
|
||||
|
||||
// Mkldnn Avx/Avx2/Avx512 unroll factors are: 6/6/8.
|
||||
static const StorageIndex kUnrollN = 24;
|
||||
static constexpr StorageIndex kUnrollN = 24;
|
||||
|
||||
public:
|
||||
TensorContractionBlocking(StorageIndex k, StorageIndex m, StorageIndex n,
|
||||
|
@ -63,7 +63,7 @@ class TensorEvaluatorHasPartialPacket {
|
||||
functionExistsSfinae<TensorEvaluatorType, PacketType, IndexType>(
|
||||
nullptr)) status;
|
||||
|
||||
static const bool value = status::value;
|
||||
static constexpr bool value = status::value;
|
||||
};
|
||||
|
||||
// Compute a mask for loading/storing coefficients in/from a packet in a
|
||||
|
@ -277,11 +277,11 @@ struct AvgPoolMeanReducer {
|
||||
#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \
|
||||
!defined(__HIPCC__)
|
||||
// We only support packet access for floats.
|
||||
static const bool PacketAccess = internal::is_same<T, float>::value;
|
||||
static constexpr bool PacketAccess = internal::is_same<T, float>::value;
|
||||
#else
|
||||
static const bool PacketAccess = false;
|
||||
#endif
|
||||
static const bool IsStateful = true;
|
||||
static constexpr bool IsStateful = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE AvgPoolMeanReducer() : scalarCount_(0) {
|
||||
typedef typename packet_traits<T>::type Packet;
|
||||
|
@ -28,15 +28,15 @@ template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType,
|
||||
struct CustomTensorEvaluator {
|
||||
typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
static const int NumInputDims = internal::array_size<
|
||||
static constexpr int NumInputDims = internal::array_size<
|
||||
typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||
static const int NumDims = NumInputDims + 1;
|
||||
static constexpr int NumDims = NumInputDims + 1;
|
||||
typedef DSizes<Index, NumDims> Dimensions;
|
||||
typedef
|
||||
typename internal::remove_const<typename XprType::Scalar>::type Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const Index PacketSize =
|
||||
static constexpr Index PacketSize =
|
||||
internal::unpacket_traits<PacketReturnType>::size;
|
||||
|
||||
enum {
|
||||
|
@ -317,7 +317,7 @@ namespace {
|
||||
template <typename Device, typename T>
|
||||
class ParameterizedTruncatedNormalOp : public OpKernel {
|
||||
// Reshape batches so each batch is this size if possible.
|
||||
static const int32 kDesiredBatchSize = 100;
|
||||
static constexpr int32 kDesiredBatchSize = 100;
|
||||
|
||||
public:
|
||||
explicit ParameterizedTruncatedNormalOp(OpKernelConstruction* context)
|
||||
|
@ -36,7 +36,7 @@ namespace tensorflow {
|
||||
class QueueBase : public QueueInterface {
|
||||
public:
|
||||
// As a possible value of 'capacity'.
|
||||
static const int32 kUnbounded = INT_MAX;
|
||||
static constexpr int32 kUnbounded = INT_MAX;
|
||||
|
||||
// Args:
|
||||
// component_dtypes: The types of each component in a queue-element tuple.
|
||||
|
@ -326,7 +326,7 @@ namespace {
|
||||
template <typename Device, typename T, typename U>
|
||||
class RandomBinomialOp : public OpKernel {
|
||||
// Reshape batches so each batch is this size if possible.
|
||||
static const int32 kDesiredBatchSize = 100;
|
||||
static constexpr int32 kDesiredBatchSize = 100;
|
||||
|
||||
public:
|
||||
explicit RandomBinomialOp(OpKernelConstruction* context)
|
||||
@ -439,7 +439,7 @@ class RandomBinomialOp : public OpKernel {
|
||||
template <typename Device, typename T, typename U>
|
||||
class StatelessRandomBinomialOp : public OpKernel {
|
||||
// Reshape batches so each batch is this size if possible.
|
||||
static const int32 kDesiredBatchSize = 100;
|
||||
static constexpr int32 kDesiredBatchSize = 100;
|
||||
|
||||
public:
|
||||
explicit StatelessRandomBinomialOp(OpKernelConstruction* context)
|
||||
|
@ -111,7 +111,7 @@ struct FillPhiloxRandomTask<Distribution, false> {
|
||||
template <class Distribution>
|
||||
struct FillPhiloxRandomTask<Distribution, true> {
|
||||
typedef typename Distribution::ResultElementType T;
|
||||
static const int64 kReservedSamplesPerOutput = 256;
|
||||
static constexpr int64 kReservedSamplesPerOutput = 256;
|
||||
|
||||
static void Run(random::PhiloxRandom base_gen, T* data, int64 size,
|
||||
int64 start_group, int64 limit_group, Distribution dist) {
|
||||
|
@ -58,7 +58,7 @@ class ResizeBicubicOpTest : public OpsTestBase {
|
||||
}
|
||||
|
||||
private:
|
||||
static const int64 kTableSize = (1 << 10);
|
||||
static constexpr int64 kTableSize = (1 << 10);
|
||||
|
||||
const float* InitCoeffsTable() {
|
||||
// Allocate and initialize coefficients table using Bicubic
|
||||
|
@ -311,7 +311,7 @@ class SparseMatmulOpTest : public ::testing::Test {
|
||||
#elif defined EIGEN_VECTORIZE_AVX || defined EIGEN_VECTORIZE_AVX2
|
||||
static const int kMaxPacketSize = 8;
|
||||
#else
|
||||
static const int kMaxPacketSize = 4;
|
||||
static constexpr int kMaxPacketSize = 4;
|
||||
#endif
|
||||
typedef typename Eigen::internal::packet_traits<float>::type Packet;
|
||||
const int PacketSize;
|
||||
|
@ -244,7 +244,7 @@ Status MOutOfBoundsError(int64 m, std::size_t i, int lhs_index_a,
|
||||
template <typename T, typename Tindices, bool ADJ_A, bool ADJ_B>
|
||||
struct SparseTensorDenseMatMulFunctor<CPUDevice, T, Tindices, ADJ_A, ADJ_B> {
|
||||
// Vectorize certain operations above this size.
|
||||
static const std::size_t kNumVectorize = 32;
|
||||
static constexpr std::size_t kNumVectorize = 32;
|
||||
|
||||
static Status Compute(const CPUDevice& d, typename TTypes<T>::Matrix out,
|
||||
typename TTypes<Tindices>::ConstMatrix a_indices,
|
||||
|
@ -137,7 +137,8 @@ class UnaryOpsComposition : public OpKernel {
|
||||
}
|
||||
|
||||
private:
|
||||
static const int kPacketSize = Eigen::internal::unpacket_traits<Packet>::size;
|
||||
static constexpr int kPacketSize =
|
||||
Eigen::internal::unpacket_traits<Packet>::size;
|
||||
|
||||
static inline int64 AlignBlockSize(int64 block_size) {
|
||||
// Align block size to packet size and account for unrolling in run above.
|
||||
|
Loading…
Reference in New Issue
Block a user