Simplify layer benchmarks.
PiperOrigin-RevId: 351672917 Change-Id: I288ca4e2e7e78912d2d1d826e9942b4f0474068e
This commit is contained in:
parent
42e87dcac5
commit
147dd154b4
@ -68,38 +68,38 @@ class KerasLayerBenchmarks(six.with_metaclass(
|
||||
"activation": "relu"
|
||||
}, {
|
||||
"input_shape": (1, 1, 1, 1)
|
||||
}, 10),
|
||||
}, 100),
|
||||
("Conv2D_normal_shape", tf.keras.layers.Conv2D, {
|
||||
"filters": 1,
|
||||
"kernel_size": 1,
|
||||
"activation": "relu"
|
||||
}, {
|
||||
"input_shape": (64, 28, 28, 3)
|
||||
}, 10),
|
||||
}, 100),
|
||||
("LSTM_small_shape", tf.keras.layers.LSTM, {
|
||||
"units": 1
|
||||
}, {
|
||||
"input_shape": (1, 1, 1)
|
||||
}, 10),
|
||||
}, 100),
|
||||
("LSTM_normal_shape", tf.keras.layers.LSTM, {
|
||||
"units": 4
|
||||
}, {
|
||||
"input_shape": (32, 10, 8)
|
||||
}, 10),
|
||||
}, 100),
|
||||
("Embedding_small_shape", tf.keras.layers.Embedding, {
|
||||
"input_dim": 1,
|
||||
"output_dim": 1,
|
||||
"input_length": 1
|
||||
}, {
|
||||
"input": np.random.randint(1, size=(1, 1))
|
||||
}, 10),
|
||||
}, 100),
|
||||
("Embedding_normal_shape", tf.keras.layers.Embedding, {
|
||||
"input_dim": 1000,
|
||||
"output_dim": 64,
|
||||
"input_length": 10
|
||||
}, {
|
||||
"input": np.random.randint(1000, size=(32, 10))
|
||||
}, 10),
|
||||
}, 100),
|
||||
])
|
||||
|
||||
def benchmark_layer_call(self, layer_cls, layer_args, inputs, num_iters):
|
||||
@ -163,50 +163,12 @@ class KerasLayerBenchmarks(six.with_metaclass(
|
||||
metadata.update(_get_metadata(name))
|
||||
self.run_report(fn, num_iters, metadata)
|
||||
|
||||
|
||||
class KerasLayerBenchmarksBackwardXLA(six.with_metaclass(
|
||||
benchmark.ParameterizedBenchmark,
|
||||
layer_benchmarks_test_base.LayerBenchmarksBase)):
|
||||
|
||||
_benchmark_parameters = benchmark_util.generate_benchmark_params_cpu_gpu([
|
||||
("Conv2D_small_shape", tf.keras.layers.Conv2D, {
|
||||
"filters": 1,
|
||||
"kernel_size": 1,
|
||||
"activation": "relu"
|
||||
}, {
|
||||
"input_shape": (1, 1, 1, 1)
|
||||
}, 10000),
|
||||
("Conv2D_normal_shape", tf.keras.layers.Conv2D, {
|
||||
"filters": 1,
|
||||
"kernel_size": 1,
|
||||
"activation": "relu"
|
||||
}, {
|
||||
"input_shape": (64, 28, 28, 3)
|
||||
}, 10000),
|
||||
# TODO(b/153480400)
|
||||
# ("LSTM_small_shape", tf.keras.layers.LSTM,
|
||||
# {"units": 1}, {"input_shape": (1, 1, 1)}, 10000),
|
||||
# ("LSTM_normal_shape", tf.keras.layers.LSTM,
|
||||
# {"units": 4}, {"input_shape": (32, 10, 8)}, 10000),
|
||||
("Embedding_small_shape", tf.keras.layers.Embedding, {
|
||||
"input_dim": 1,
|
||||
"output_dim": 1,
|
||||
"input_length": 1
|
||||
}, {
|
||||
"input": np.random.randint(1, size=(1, 1))
|
||||
}, 10),
|
||||
("Embedding_normal_shape", tf.keras.layers.Embedding, {
|
||||
"input_dim": 1000,
|
||||
"output_dim": 64,
|
||||
"input_length": 10
|
||||
}, {
|
||||
"input": np.random.randint(1000, size=(32, 10))
|
||||
}, 10),
|
||||
])
|
||||
|
||||
def benchmark_layer_call_backward_with_xla(
|
||||
self, layer_cls, layer_args, inputs, num_iters):
|
||||
name = benchmark_util.get_benchmark_name(self._get_name())
|
||||
# TODO(b/153480400)
|
||||
if layer_cls is tf.keras.layers.LSTM:
|
||||
return
|
||||
# TODO(b/173461426)
|
||||
if layer_cls is tf.keras.layers.Embedding and name[-1] == "GPU":
|
||||
return
|
||||
|
Loading…
x
Reference in New Issue
Block a user