[Grappler] In the constant folding optimizer: Directly convert Fill, ZerosLike, and OnesLike with known output shape to Const nodes in compressed format without materializing the (potentially large) tensor value by evaluating the node.

PiperOrigin-RevId: 232701020
This commit is contained in:
A. Unique TensorFlower 2019-02-06 10:37:05 -08:00 committed by TensorFlower Gardener
parent 3bfbcb2abd
commit 1362eaa98e
4 changed files with 113 additions and 2 deletions

View File

@ -103,6 +103,7 @@ cc_library(
"//tensorflow/core/grappler/costs:graph_properties",
"//tensorflow/core/grappler/utils:symbolic_shapes",
"@com_google_absl//absl/container:flat_hash_set",
"@com_google_absl//absl/strings",
],
)

View File

@ -17,6 +17,7 @@ limitations under the License.
#include "tensorflow/core/grappler/optimizers/constant_folding.h"
#include "absl/strings/string_view.h"
#include "tensorflow/core/framework/allocator.h"
#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/function.pb.h"
@ -716,6 +717,61 @@ Status ConstantFolding::MaterializeReductionIndices(
return Status::OK();
}
Status ConstantFolding::MaterializeConstantValuedNode(
NodeDef* node, const GraphProperties& properties) {
// Nodes that generate constant-valued outputs can be represented compactly in
// compressed format, regardless of their shape.
const std::vector<OpInfo::TensorProperties>& output_props =
properties.GetOutputProperties(node->name());
if (output_props.size() != 1) return Status::OK();
const auto& output_shape = output_props[0].shape();
if (!PartialTensorShape(output_shape).IsFullyDefined()) {
return Status::OK();
}
if (IsFill(*node)) {
const auto output_dtype = output_props[0].dtype();
NodeDef* input_node = nullptr;
for (int i = 0; i < 2; ++i) {
input_node = node_map_->GetNode(NodeName(node->input(i)));
if (input_node == nullptr || !IsReallyConstant(*input_node)) {
return Status::OK();
}
}
TF_RETURN_IF_ERROR(CheckAttrExists(*input_node, "value"));
const TensorProto& input_tensor = input_node->attr().at("value").tensor();
// TODO(rmlarsen): Handle the case where the value is stored in
// tensor_content.
if (!input_tensor.tensor_content().empty()) {
return Status::OK();
}
TensorProto* tensor = (*node->mutable_attr())["value"].mutable_tensor();
// Copy the input tensor to the fill node, set the output shape, and
// change the nodd type to Const.
*tensor = input_tensor;
*(tensor->mutable_tensor_shape()) = output_shape;
(*node->mutable_attr())["dtype"].set_type(output_dtype);
node->mutable_attr()->erase("T");
node->mutable_attr()->erase("index_type");
node->set_op("Const");
for (int i = 0; i < 2; i++) {
// Change inputs to a control inputs.
const string ctrl_dep = AsControlDependency(node->input(i));
node_map_->UpdateInput(node->name(), node->input(i), ctrl_dep);
node->set_input(i, ctrl_dep);
}
graph_modified_ = true;
} else {
double value =
(IsZerosLike(*node) ? 0.0 : (IsOnesLike(*node) ? 1.0 : -1.0));
bool success = false;
if (value >= 0) {
TF_RETURN_IF_ERROR(ReplaceOperationWithConstant(
value, properties, output_shape, node, graph_, &success));
}
}
return Status::OK();
}
Status ConstantFolding::MaterializeConstants(
const GraphProperties& properties) {
const int node_count = graph_->node_size();
@ -726,6 +782,8 @@ Status ConstantFolding::MaterializeConstants(
TF_RETURN_IF_ERROR(MaterializeBroadcastGradientArgs(node, properties));
} else if (IsReduction(node)) {
TF_RETURN_IF_ERROR(MaterializeReductionIndices(&node, properties));
} else if (IsFill(node) || IsZerosLike(node) || IsOnesLike(node)) {
TF_RETURN_IF_ERROR(MaterializeConstantValuedNode(&node, properties));
}
}
return Status::OK();
@ -1569,6 +1627,7 @@ Status ConstantFolding::ReplaceOperationWithConstant(
node->set_input(i, ctrl_dep);
}
*success = true;
graph_modified_ = true;
return Status::OK();
}

View File

@ -67,8 +67,10 @@ class ConstantFolding : public GraphOptimizer {
const GraphProperties& properties);
Status MaterializeReductionIndices(NodeDef* node,
const GraphProperties& properties);
Status MaterializeConstantValuedNode(NodeDef* node,
const GraphProperties& properties);
Status MaterializeConstants(const GraphProperties& properties);
bool IsFoldable(const NodeDef& node) const;
Status EvaluateNode(const NodeDef& node,

View File

@ -378,7 +378,7 @@ TEST_F(ConstantFoldingTest, NeutralElement) {
const string ones_name = strings::StrCat("ones", suffix);
const string ctrl_zeros_name = strings::StrCat("^zeros", suffix);
const string ctrl_ones_name = strings::StrCat("^ones", suffix);
EXPECT_EQ(27, output.node_size());
EXPECT_EQ(const_type == kFill ? 31 : 27, output.node_size());
for (int i = 0; i < output.node_size(); ++i) {
const NodeDef& node = output.node(i);
const string& name = node.name();
@ -3466,6 +3466,55 @@ TEST_F(ConstantFoldingCastConstTest, CastConstFolding) {
}
}
TEST_F(ConstantFoldingTest, MaterializeConstantValuedNode) {
tensorflow::Scope scope = tensorflow::Scope::NewRootScope();
Output x =
ops::Placeholder(scope.WithOpName("x"), DT_FLOAT,
ops::Placeholder::Shape(TensorShape({1, 2, 3, 4})));
Output ones_like = ops::OnesLike(scope.WithOpName("ones_like"), x);
Output zeros_like = ops::ZerosLike(scope.WithOpName("zeros_like"), x);
Output fill = ops::Fill(scope.WithOpName("fill"), {4, 3, 2, 1}, 42);
GrapplerItem item;
TF_CHECK_OK(scope.ToGraphDef(&item.graph));
item.fetch = {"ones_like", "zeros_like", "fill"};
auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 2, 3, 4}));
auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"x", x_t}});
ConstantFolding optimizer(/*opt_level=*/RewriterConfig::AGGRESSIVE,
/*cpu_device=*/nullptr);
GraphDef output;
Status status = optimizer.Optimize(/*cluster=*/nullptr, item, &output);
TF_EXPECT_OK(status);
EXPECT_EQ(output.node_size(), 6);
for (const auto& node : output.node()) {
if (node.name() != "x") {
EXPECT_EQ(node.op(), "Const");
}
if (node.name() == "ones_like" || node.name() == "zeros_like") {
ASSERT_EQ(node.input_size(), 1);
EXPECT_EQ(node.input(0), "^x");
}
if (node.name() == "fill") {
ASSERT_EQ(node.input_size(), 2);
EXPECT_EQ(node.input(0)[0], '^');
EXPECT_EQ(node.input(1)[0], '^');
}
}
auto tensors = EvaluateNodes(output, item.fetch, {{"x", x_t}});
ASSERT_EQ(item.fetch.size(), tensors.size());
ASSERT_EQ(tensors_expected.size(), tensors.size());
for (int i = 0; i < tensors.size(); i++) {
if (item.fetch[i] == "fill") {
test::ExpectTensorEqual<int>(tensors_expected[i], tensors[i]);
} else {
test::ExpectTensorEqual<float>(tensors_expected[i], tensors[i]);
}
}
}
} // namespace
} // namespace grappler
} // namespace tensorflow