[XLA] Change the QR decomposition implementation to lower to a CustomCall operator that is later expanded by a new QrExpander pass. This allows backends to lower the Qr decomposition differently if they choose.

PiperOrigin-RevId: 332972250
Change-Id: I24f9c7ed02a2a207e052cb713947baa31d909425
This commit is contained in:
Peter Hawkins 2020-09-21 17:25:52 -07:00 committed by TensorFlower Gardener
parent 5d5534edf7
commit 1214a3035e
10 changed files with 536 additions and 319 deletions

View File

@ -35,277 +35,7 @@ namespace xla {
namespace {
std::vector<int64> ConcatVectors(absl::Span<const int64> xs,
absl::Span<const int64> ys) {
std::vector<int64> output(xs.size() + ys.size());
std::copy(xs.begin(), xs.end(), output.begin());
std::copy(ys.begin(), ys.end(), output.begin() + xs.size());
return output;
}
// Computes a Householder reflection of the form:
// H = I - tau v v.T.
// such that
// H . ( x1 ) = ( x1 )
// ( x2 ) = ( x2 )
// ( ... ) = ( ... )
// ( xk ) = ( beta )
// ( ... ) ( 0 )
// ( ... ) ( 0 )
// Unlike the usual formulation, we allow the caller to supply 'k' rather than
// only providing the relevant part of 'x' to maintain XLA's static shape
// invariant. In addition, the implementation supports batching.
// Pseudo-code, without batching:
// alpha = x[k]
// x_copy = np.copy(x)
// x_copy[:k+1] = 0
// xnorm = norm2(x_copy)
// if xnorm == 0:
// beta = alpha
// tau = 0
// v = np.zeros_like(x)
// else:
// beta = - np.sign(alpha) * dlapy2(alpha, xnorm)
// tau = (beta - alpha) / beta
// v = x / (alpha - beta)
// v[k] = 1
// return (v, tau, beta)
// TODO(phawkins): LAPACK's xLARFG implementation has code for handling
// overflows in the norm/beta calculations. Perhaps do the same here.
Status House(XlaOp x, XlaOp k, absl::Span<const int64> batch_dims,
const int64 m, XlaOp* v, XlaOp* tau, XlaOp* beta) {
XlaBuilder* const builder = x.builder();
TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x));
const PrimitiveType type = x_shape.element_type();
std::vector<int64> batch_dim_ids(batch_dims.size());
std::iota(batch_dim_ids.begin(), batch_dim_ids.end(), 0);
const int64 minor_dim = batch_dims.size();
XlaOp zero = ScalarLike(x, 0.0);
XlaOp one = ScalarLike(x, 1.0);
// alpha = x[k]
XlaOp alpha = Reshape(DynamicSliceInMinorDims(x, {k}, {1}), batch_dims);
// Compute x[k+1:] (padded with zeros in elements 0..k)
XlaOp iota = Iota(builder, S32, m);
XlaOp x_after_k = Mul(x, ConvertElementType(Gt(iota, k), type),
/*broadcast_dimensions=*/{minor_dim});
// sigma = np.dot(x[k+1:], x[k+1:])
auto sigma = Reduce(x_after_k * x_after_k, zero,
CreateScalarAddComputation(type, builder), {minor_dim});
// mu = np.sqrt(x[k]*x[k] + sigma)
auto mu = Sqrt(Square(alpha) + sigma);
auto sigma_is_zero = Eq(sigma, zero);
*beta = Select(sigma_is_zero, alpha, Select(Lt(alpha, zero), one, -one) * mu);
*tau = Select(sigma_is_zero, Broadcast(zero, batch_dims),
(*beta - alpha) / *beta);
auto divisor =
Select(sigma_is_zero, Broadcast(one, batch_dims), alpha - *beta);
auto e_k = Broadcast(ConvertElementType(Eq(iota, k), type),
std::vector<int64>(batch_dims.size(), 1));
// Form v as [0, 0, ..., 1] ++ x[k+1:] / divisor
// If sigma is zero, x[k+1:] is zero, so use any non-zero divisor.
*v = e_k + Div(x_after_k, divisor, /*broadcast_dimensions=*/batch_dim_ids);
return Status::OK();
}
// Householder QR decomposition. Algorithm 5.2.1 from Golub and Van
// Loan "Matrix Computations", 4th Edition. This is an unblocked implementation
// used as an inner routine of the blocked implementation.
// Algorithm is adapted slightly so the shapes inside the loop are static, at
// the cost of some redundant computation. Since this is used as an inner block
// kernel, accumulates the Householder transformations (vs, taus) rather than
// the matrix q.
// Equivalent Python code, without batching:
// def qr(a):
// m = a.shape[0]
// n = a.shape[1]
// taus = np.zeros([n])
// for j in xrange(min(m, n)):
// v, tau, beta = house(a[:, j], j)
// a[:, j+1:] -= tau * np.dot(v[:, np.newaxis],
// np.dot(v[np.newaxis, :], a[:, j+1:]))
// # Form column j explicitly rather than relying on the precision of the
// # Householder update.
// a[j, j] = beta
// a[j+1:, j] = v[j+1:]
// taus[j] = tau
// return (a, taus)
struct QRBlockResult {
// The upper-triangular matrix R, packed together with the lower-triangular
// elementary Householder reflectors `vs` below the diagonal.
XlaOp a;
// Representation of the Householder matrices I - beta v v.T
XlaOp taus; // Shape: [..., n]
};
StatusOr<QRBlockResult> QRBlock(XlaOp a, PrecisionConfig::Precision precision) {
XlaBuilder* builder = a.builder();
TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a));
const int num_dims = a_shape.rank();
if (num_dims < 2) {
return InvalidArgument("Argument to QR must have rank >= 2; got shape %s",
a_shape.ToString());
}
PrimitiveType type = a_shape.element_type();
const int64 m = ShapeUtil::GetDimension(a_shape, -2);
const int64 n = ShapeUtil::GetDimension(a_shape, -1);
const int64 num_batch_dims = num_dims - 2;
std::vector<int64> batch_dims(num_batch_dims);
for (int i = 0; i < num_batch_dims; ++i) {
batch_dims[i] = ShapeUtil::GetDimension(a_shape, i);
}
std::vector<int64> batch_dim_indices(num_batch_dims);
std::iota(batch_dim_indices.begin(), batch_dim_indices.end(), 0);
auto qr_body_fn = [&](XlaOp j, absl::Span<const XlaOp> values,
XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
auto a = values[0];
auto taus = values[1];
// v, tau, beta = house(a[:, j], j)
auto x = DynamicSliceInMinorDims(a, {j}, {1});
XlaOp v, tau, beta;
TF_RETURN_IF_ERROR(House(Collapse(x, {num_dims - 2, num_dims - 1}), j,
batch_dims, m, &v, &tau, &beta));
const int64 minor_dim = batch_dims.size();
auto iota_mn = Iota(
builder, ShapeUtil::MakeShape(S32, ConcatVectors(batch_dims, {m, n})),
minor_dim + 1);
std::vector<int64> shape = batch_dims;
shape.push_back(1);
shape.push_back(m);
auto v_broadcast = Reshape(v, shape);
// a[:, j+1:] -= tau * (v[:, np.newaxis] @ (v[np.newaxis, :] @ a[:, j+1:]))
// We use masking rather than a loop-variant shape to handle the j+1:
// indexing.
auto vva = BatchDot(v_broadcast, Select(Lt(j, iota_mn), a, ZerosLike(a)),
precision);
vva = BatchDot(v_broadcast, true, vva, false, precision);
a = a - Mul(tau, vva,
/*broadcast_dimensions=*/batch_dim_indices);
// a[j, j] = beta
// a[j+1:,j] = v[j+1:]
auto iota = Reshape(Iota(a.builder(), S32, m), {m, 1});
auto predecessor_mask = ConvertElementType(Lt(iota, j), type);
auto mask = Broadcast(ConvertElementType(Eq(iota, j), type),
std::vector<int64>(batch_dims.size(), 1));
auto successor_mask = Gt(Iota(a.builder(), S32, m), j);
auto new_x = Mul(x, predecessor_mask,
/*broadcast_dimensions=*/{num_dims - 2, num_dims - 1}) +
Mul(beta, mask, /*broadcast_dimensions=*/batch_dim_indices);
new_x = Add(
new_x, Select(Broadcast(successor_mask, batch_dims), v, ZerosLike(v)),
/*broadcast_dimensions=*/ConcatVectors(batch_dim_indices, {minor_dim}));
// Update a[:,j]
std::vector<int64> dim_ids(num_dims);
std::iota(dim_ids.begin(), dim_ids.end(), 0);
new_x = BroadcastInDim(new_x, ConcatVectors(batch_dims, {m, n}),
/*broadcast_dimensions=*/dim_ids);
a = Select(Eq(iota_mn, j), new_x, a);
// taus[j] = tau
std::vector<int64> tau_broadcast_dims(batch_dims.size());
std::iota(tau_broadcast_dims.begin(), tau_broadcast_dims.end(), 0);
auto iota_n =
Iota(builder, ShapeUtil::MakeShape(S32, ConcatVectors(batch_dims, {n})),
minor_dim);
auto taus_zeros = ZerosLike(taus);
auto taus_update = Select(
Eq(iota_n, j),
Add(taus_zeros, tau, /*broadcast_dimensions=*/tau_broadcast_dims),
taus_zeros);
taus = taus + taus_update;
return std::vector<XlaOp>{a, taus};
};
auto taus = Zeros(builder,
ShapeUtil::MakeShape(type, ConcatVectors(batch_dims, {n})));
TF_ASSIGN_OR_RETURN(auto values, ForEachIndex(std::min(m, n), S32, qr_body_fn,
{a, taus}, "qr", builder));
QRBlockResult result;
result.a = values[0];
result.taus = values[1];
return result;
}
// Computes T such that (I - Y @ T @ Y^t) is a product of the elementary
// Householder reflectors given by `vs` and `taus`.
//
// Schreiber, Robert, and Charles Van Loan. "A storage-efficient WY
// representation for products of Householder transformations." SIAM Journal on
// Scientific and Statistical Computing 10.1 (1989): 53-57.
//
// def compact_wy(vs, taus):
// m, n = vs.shape[-2:]
// t = np.eye(n) * -taus
// # We premultiply Y.T @ vs, since we would prefer to compute a single matrix
// # multiplication to many matrix-vector products.
// vtv = -taus[None, :] * np.triu(vs.T @ vs, 1) + np.eye(n)
// for i in range(1, n):
// t[:, i] = np.dot(t, vtv[:, i])
// return t
StatusOr<XlaOp> CompactWYRepresentation(PrimitiveType type,
absl::Span<const int64> batch_dims,
XlaOp vs, XlaOp taus, int64 m, int64 n,
PrecisionConfig::Precision precision) {
std::vector<int64> batch_dim_indices(batch_dims.size());
std::iota(batch_dim_indices.begin(), batch_dim_indices.end(), 0);
int64 n_index = batch_dims.size() + 1;
auto body_fn = [&](XlaOp j, absl::Span<const XlaOp> values,
XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
// w has shape [..., m, n]
auto t = values[0];
const auto vtv = values[1];
// Want j values in range [1, ... n).
j = j + ConstantR0<int32>(builder, 1);
// yv has shape [..., n, 1]
auto yv = DynamicSliceInMinorDims(vtv, {j}, {1});
// wyv has shape [..., n, 1]
auto z = BatchDot(t, yv, precision);
t = DynamicUpdateSliceInMinorDims(t, z, {j});
return std::vector<XlaOp>{t, vtv};
};
XlaBuilder* builder = vs.builder();
auto tau_scale = BroadcastInDim(-taus, ConcatVectors(batch_dims, {1, n}),
ConcatVectors(batch_dim_indices, {n_index}));
auto eye = Broadcast(IdentityMatrix(builder, type, n, n), batch_dims);
auto t = eye * tau_scale;
auto vtv =
BatchDot(vs, /*transpose_x=*/true, vs, /*transpose_y=*/false, precision);
vtv = Select(TriangleMask(vtv, 0), ZerosLike(vtv), vtv) * tau_scale;
vtv = vtv + eye;
TF_ASSIGN_OR_RETURN(
auto values, ForEachIndex(n - 1, S32, body_fn, {t, vtv}, "wy", builder));
return values[0];
}
} // namespace
@ -332,8 +62,6 @@ StatusOr<QRDecompositionResult> QRDecomposition(
return InvalidArgument("Arguments to QR must have rank >= 2: got shape %s",
a_shape.ToString());
}
PrimitiveType type = a_shape.element_type();
const int64 m = ShapeUtil::GetDimension(a_shape, -2);
const int64 n = ShapeUtil::GetDimension(a_shape, -1);
const int64 p = std::min(m, n);
@ -343,60 +71,21 @@ StatusOr<QRDecompositionResult> QRDecomposition(
block_size);
}
const int64 num_batch_dims = num_dims - 2;
std::vector<int64> batch_dims(num_batch_dims);
for (int i = 0; i < num_batch_dims; ++i) {
batch_dims[i] = ShapeUtil::GetDimension(a_shape, i);
}
Shape q_shape = a_shape;
q_shape.mutable_dimensions().back() = m;
auto q = Broadcast(IdentityMatrix(builder, type, m, m), batch_dims);
for (int64 i = 0; i < p; i += block_size) {
int64 k = std::min(block_size, p - i);
auto a_block = SliceInMinorDims(a, {i, i}, {m, i + k});
TF_ASSIGN_OR_RETURN(auto qr_block, QRBlock(a_block, precision));
auto y = Add(
IdentityMatrix(builder, type, m - i, k),
Select(TriangleMask(qr_block.a, -1), qr_block.a, ZerosLike(qr_block.a)),
/*broadcast_dimensions=*/{num_dims - 2, num_dims - 1});
a = UpdateSliceInMinorDims(a, qr_block.a, {i, i});
// Compute the I + Y @ T @ Y^t block representation of a product of
// Householder matrices.
TF_ASSIGN_OR_RETURN(
auto t, CompactWYRepresentation(type, batch_dims, y, qr_block.taus,
m - i, k, precision));
// a[i:, i+k:] += (y @ t.T) @ (y.T @ a[i:, i+k:])
auto yt =
BatchDot(y, /*transpose_x=*/false, t, /*transpose_y=*/true, precision);
auto a_panel = SliceInMinorDims(a, {i, i + k}, {m, n});
auto a_update = BatchDot(y, /*transpose_x=*/true, a_panel,
/*transpose_y=*/false, precision);
a_update = BatchDot(yt, a_update, precision);
a_panel = a_panel + a_update;
a = UpdateSliceInMinorDims(a, a_panel, {i, i + k});
// q[:, i:] += (q[:, i:] @ y) @ (y @ t.T).T
auto q_panel = SliceInMinorDims(q, {0, i}, {m, m});
auto q_update = BatchDot(q_panel, y, precision);
q_update = BatchDot(q_update, /*transpose_x=*/false, yt,
/*transpose_y=*/true, precision);
q_panel = q_panel + q_update;
q = UpdateSliceInMinorDims(q, q_panel, {0, i});
}
QRDecompositionResult result;
Shape qr_shape = ShapeUtil::MakeTupleShape({q_shape, a_shape});
auto qr = CustomCall(a.builder(), "QrDecomposition", {a}, qr_shape);
auto q = GetTupleElement(qr, 0);
auto r = GetTupleElement(qr, 1);
// full_matrices is false when only a partial result in needed. Slice to the
// needed dimensions here.
if (!full_matrices) {
q = SliceInMinorDims(q, {0, 0}, {m, p});
a = SliceInMinorDims(a, {0, 0}, {p, n});
r = SliceInMinorDims(r, {0, 0}, {p, n});
}
result.q = q;
result.r = UpperTriangle(a);
return result;
return QRDecompositionResult{q, r};
}
} // namespace xla

View File

@ -1952,6 +1952,29 @@ cc_library(
],
)
cc_library(
name = "qr_expander",
srcs = ["qr_expander.cc"],
hdrs = ["qr_expander.h"],
deps = [
":op_expander_pass",
"//tensorflow/compiler/xla:literal",
"//tensorflow/compiler/xla:shape_util",
"//tensorflow/compiler/xla:status_macros",
"//tensorflow/compiler/xla:statusor",
"//tensorflow/compiler/xla:util",
"//tensorflow/compiler/xla/client:xla_builder",
"//tensorflow/compiler/xla/client/lib:arithmetic",
"//tensorflow/compiler/xla/client/lib:constants",
"//tensorflow/compiler/xla/client/lib:loops",
"//tensorflow/compiler/xla/client/lib:math",
"//tensorflow/compiler/xla/client/lib:matrix",
"//tensorflow/compiler/xla/client/lib:slicing",
"//tensorflow/core:lib",
"@com_google_absl//absl/container:flat_hash_map",
],
)
cc_library(
name = "convolution_4d_expander",
srcs = ["convolution_4d_expander.cc"],

View File

@ -170,6 +170,7 @@ cc_library(
"//tensorflow/compiler/xla/service:buffer_assignment",
"//tensorflow/compiler/xla/service:call_inliner",
"//tensorflow/compiler/xla/service:cholesky_expander",
"//tensorflow/compiler/xla/service:qr_expander",
"//tensorflow/compiler/xla/service:conditional_simplifier",
"//tensorflow/compiler/xla/service:convolution_group_converter",
"//tensorflow/compiler/xla/service:dot_decomposer",

View File

@ -103,6 +103,7 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/logistic_expander.h"
#include "tensorflow/compiler/xla/service/map_inliner.h"
#include "tensorflow/compiler/xla/service/qr_expander.h"
#include "tensorflow/compiler/xla/service/reshape_mover.h"
#include "tensorflow/compiler/xla/service/rng_bit_generator_expander.h"
#include "tensorflow/compiler/xla/service/rng_expander.h"
@ -281,6 +282,7 @@ Status CpuCompiler::RunHloPassesThroughLayoutAssn(
pipeline.AddPass<ComparisonExpander>();
pipeline.AddPass<CholeskyExpander>();
pipeline.AddPass<QrExpander>();
pipeline.AddPass<TriangularSolveExpander>();
// Inline computations with a single call site.

View File

@ -1230,6 +1230,7 @@ cc_library(
"//tensorflow/compiler/xla/service:hlo_verifier",
"//tensorflow/compiler/xla/service:llvm_compiler",
"//tensorflow/compiler/xla/service:logistic_expander",
"//tensorflow/compiler/xla/service:qr_expander",
"//tensorflow/compiler/xla/service:rng_bit_generator_expander",
"//tensorflow/compiler/xla/service:rng_expander",
"//tensorflow/compiler/xla/service:slice_sinker",

View File

@ -92,6 +92,7 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/hlo_verifier.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/logistic_expander.h"
#include "tensorflow/compiler/xla/service/qr_expander.h"
#include "tensorflow/compiler/xla/service/rng_bit_generator_expander.h"
#include "tensorflow/compiler/xla/service/rng_expander.h"
#include "tensorflow/compiler/xla/service/slice_sinker.h"
@ -151,6 +152,8 @@ Status GpuCompiler::OptimizeHloModule(
pipeline.AddPass<ZeroSizedHloElimination>();
pipeline.AddPass<GpuScatterExpander>();
// TODO(phawkins): replace QR decompositions with calls to cuSOLVER.
pipeline.AddPass<QrExpander>();
pipeline.AddPass<DynamicIndexSplitter>();

View File

@ -53,6 +53,7 @@ cc_library(
"//tensorflow/compiler/xla/service:hlo_subcomputation_unification",
"//tensorflow/compiler/xla/service:layout_assignment",
"//tensorflow/compiler/xla/service:map_inliner",
"//tensorflow/compiler/xla/service:qr_expander",
"//tensorflow/compiler/xla/service:reshape_mover",
"//tensorflow/compiler/xla/service:triangular_solve_expander",
"//tensorflow/compiler/xla/service:while_loop_simplifier",

View File

@ -35,6 +35,7 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/interpreter/executable.h"
#include "tensorflow/compiler/xla/service/layout_assignment.h"
#include "tensorflow/compiler/xla/service/map_inliner.h"
#include "tensorflow/compiler/xla/service/qr_expander.h"
#include "tensorflow/compiler/xla/service/reshape_mover.h"
#include "tensorflow/compiler/xla/service/triangular_solve_expander.h"
#include "tensorflow/compiler/xla/service/while_loop_simplifier.h"
@ -82,6 +83,7 @@ Status InterpreterCompiler::RunHloOptimization(HloModule* hlo_module) {
pipeline.AddPass<DynamicIndexSplitter>();
pipeline.AddPass<CholeskyExpander>();
pipeline.AddPass<QrExpander>();
pipeline.AddPass<ComparisonExpander>();
pipeline.AddPass<TriangularSolveExpander>();
pipeline.AddPass<LayoutAssignment>(

View File

@ -0,0 +1,434 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/qr_expander.h"
#include <memory>
#include <vector>
#include "tensorflow/compiler/xla/client/lib/arithmetic.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/lib/loops.h"
#include "tensorflow/compiler/xla/client/lib/math.h"
#include "tensorflow/compiler/xla/client/lib/matrix.h"
#include "tensorflow/compiler/xla/client/lib/slicing.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/compiler/xla/primitive_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/lib/core/errors.h"
namespace xla {
namespace {
std::vector<int64> ConcatVectors(absl::Span<const int64> xs,
absl::Span<const int64> ys) {
std::vector<int64> output;
output.reserve(xs.size() + ys.size());
std::copy(xs.begin(), xs.end(), std::back_inserter(output));
std::copy(ys.begin(), ys.end(), std::back_inserter(output));
return output;
}
// Computes a Householder reflection of the form:
// H = I - tau v v.T.
// such that
// H . ( x1 ) = ( x1 )
// ( x2 ) = ( x2 )
// ( ... ) = ( ... )
// ( xk ) = ( beta )
// ( ... ) ( 0 )
// ( ... ) ( 0 )
// Unlike the usual formulation, we allow the caller to supply 'k' rather than
// only providing the relevant part of 'x' to maintain XLA's static shape
// invariant. In addition, the implementation supports batching.
// Pseudo-code, without batching:
// alpha = x[k]
// x_copy = np.copy(x)
// x_copy[:k+1] = 0
// xnorm = norm2(x_copy)
// if xnorm == 0:
// beta = alpha
// tau = 0
// v = np.zeros_like(x)
// else:
// beta = - np.sign(alpha) * dlapy2(alpha, xnorm)
// tau = (beta - alpha) / beta
// v = x / (alpha - beta)
// v[k] = 1
// return (v, tau, beta)
// TODO(phawkins): LAPACK's xLARFG implementation has code for handling
// overflows in the norm/beta calculations. Perhaps do the same here.
Status House(XlaOp x, XlaOp k, absl::Span<const int64> batch_dims,
const int64 m, XlaOp* v, XlaOp* tau, XlaOp* beta) {
XlaBuilder* const builder = x.builder();
TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x));
const PrimitiveType type = x_shape.element_type();
std::vector<int64> batch_dim_ids(batch_dims.size());
std::iota(batch_dim_ids.begin(), batch_dim_ids.end(), 0);
const int64 minor_dim = batch_dims.size();
XlaOp zero = ScalarLike(x, 0.0);
XlaOp one = ScalarLike(x, 1.0);
// alpha = x[k]
XlaOp alpha = Reshape(DynamicSliceInMinorDims(x, {k}, {1}), batch_dims);
// Compute x[k+1:] (padded with zeros in elements 0..k)
XlaOp iota = Iota(builder, S32, m);
XlaOp x_after_k = Mul(x, ConvertElementType(Gt(iota, k), type),
/*broadcast_dimensions=*/{minor_dim});
// sigma = np.dot(x[k+1:], x[k+1:])
// TODO(phawkins): this calculation may be numerically unstable.
auto sigma = Reduce(x_after_k * x_after_k, zero,
CreateScalarAddComputation(type, builder), {minor_dim});
// mu = np.sqrt(x[k]*x[k] + sigma)
auto mu = Sqrt(Square(alpha) + sigma);
auto sigma_is_zero = Eq(sigma, zero);
*beta = Select(sigma_is_zero, alpha, Select(Lt(alpha, zero), one, -one) * mu);
*tau = Select(sigma_is_zero, Broadcast(zero, batch_dims),
(*beta - alpha) / *beta);
auto divisor =
Select(sigma_is_zero, Broadcast(one, batch_dims), alpha - *beta);
auto e_k = Broadcast(ConvertElementType(Eq(iota, k), type),
std::vector<int64>(batch_dims.size(), 1));
// Form v as [0, 0, ..., 1] ++ x[k+1:] / divisor
// If sigma is zero, x[k+1:] is zero, so use any non-zero divisor.
*v = e_k + Div(x_after_k, divisor, /*broadcast_dimensions=*/batch_dim_ids);
return Status::OK();
}
} // namespace
// Householder QR decomposition. Algorithm 5.2.1 from Golub and Van
// Loan "Matrix Computations", 4th Edition. This is an unblocked implementation
// used as an inner routine of the blocked implementation.
// Algorithm is adapted slightly so the shapes inside the loop are static, at
// the cost of some redundant computation. Since this is used as an inner block
// kernel, accumulates the Householder transformations (vs, taus) rather than
// the matrix q.
// Equivalent Python code, without batching:
// def qr(a):
// m = a.shape[0]
// n = a.shape[1]
// taus = np.zeros([n])
// for j in xrange(min(m, n)):
// v, tau, beta = house(a[:, j], j)
// a[:, j+1:] -= tau * np.dot(v[:, np.newaxis],
// np.dot(v[np.newaxis, :], a[:, j+1:]))
// # Form column j explicitly rather than relying on the precision of the
// # Householder update.
// a[j, j] = beta
// a[j+1:, j] = v[j+1:]
// taus[j] = tau
// return (a, taus)
StatusOr<QrExpander::QrResult> QrExpander::QrBlock(
XlaOp a, PrecisionConfig::Precision precision) {
XlaBuilder* builder = a.builder();
TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a));
const int num_dims = a_shape.rank();
if (num_dims < 2) {
return InvalidArgument("Argument to QR must have rank >= 2; got shape %s",
a_shape.ToString());
}
PrimitiveType type = a_shape.element_type();
const int64 m = ShapeUtil::GetDimension(a_shape, -2);
const int64 n = ShapeUtil::GetDimension(a_shape, -1);
const int64 num_batch_dims = num_dims - 2;
std::vector<int64> batch_dims(num_batch_dims);
for (int i = 0; i < num_batch_dims; ++i) {
batch_dims[i] = ShapeUtil::GetDimension(a_shape, i);
}
std::vector<int64> batch_dim_indices(num_batch_dims);
std::iota(batch_dim_indices.begin(), batch_dim_indices.end(), 0);
auto qr_body_fn = [&](XlaOp j, absl::Span<const XlaOp> values,
XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
auto a = values[0];
auto taus = values[1];
// v, tau, beta = house(a[:, j], j)
auto x = DynamicSliceInMinorDims(a, {j}, {1});
XlaOp v, tau, beta;
TF_RETURN_IF_ERROR(House(Collapse(x, {num_dims - 2, num_dims - 1}), j,
batch_dims, m, &v, &tau, &beta));
const int64 minor_dim = batch_dims.size();
auto iota_mn = Iota(
builder, ShapeUtil::MakeShape(S32, ConcatVectors(batch_dims, {m, n})),
minor_dim + 1);
std::vector<int64> shape = batch_dims;
shape.push_back(1);
shape.push_back(m);
auto v_broadcast = Reshape(v, shape);
// a[:, j+1:] -= tau * (v[:, np.newaxis] @ (v[np.newaxis, :] @ a[:, j+1:]))
// We use masking rather than a loop-variant shape to handle the j+1:
// indexing.
auto vva = BatchDot(v_broadcast, Select(Lt(j, iota_mn), a, ZerosLike(a)),
precision);
vva = BatchDot(v_broadcast, true, vva, false, precision);
a = a - Mul(tau, vva,
/*broadcast_dimensions=*/batch_dim_indices);
// a[j, j] = beta
// a[j+1:,j] = v[j+1:]
auto iota = Reshape(Iota(a.builder(), S32, m), {m, 1});
auto predecessor_mask = ConvertElementType(Lt(iota, j), type);
auto mask = Broadcast(ConvertElementType(Eq(iota, j), type),
std::vector<int64>(batch_dims.size(), 1));
auto successor_mask = Gt(Iota(a.builder(), S32, m), j);
auto new_x = Mul(x, predecessor_mask,
/*broadcast_dimensions=*/{num_dims - 2, num_dims - 1}) +
Mul(beta, mask, /*broadcast_dimensions=*/batch_dim_indices);
new_x = Add(
new_x, Select(Broadcast(successor_mask, batch_dims), v, ZerosLike(v)),
/*broadcast_dimensions=*/ConcatVectors(batch_dim_indices, {minor_dim}));
// Update a[:,j]
std::vector<int64> dim_ids(num_dims);
std::iota(dim_ids.begin(), dim_ids.end(), 0);
new_x = BroadcastInDim(new_x, ConcatVectors(batch_dims, {m, n}),
/*broadcast_dimensions=*/dim_ids);
a = Select(Eq(iota_mn, j), new_x, a);
// taus[j] = tau
std::vector<int64> tau_broadcast_dims(batch_dims.size());
std::iota(tau_broadcast_dims.begin(), tau_broadcast_dims.end(), 0);
auto iota_n =
Iota(builder, ShapeUtil::MakeShape(S32, ConcatVectors(batch_dims, {n})),
minor_dim);
auto taus_zeros = ZerosLike(taus);
auto taus_update = Select(
Eq(iota_n, j),
Add(taus_zeros, tau, /*broadcast_dimensions=*/tau_broadcast_dims),
taus_zeros);
taus = taus + taus_update;
return std::vector<XlaOp>{a, taus};
};
auto taus = Zeros(
builder,
ShapeUtil::MakeShape(type, ConcatVectors(batch_dims, {std::min(m, n)})));
TF_ASSIGN_OR_RETURN(auto values, ForEachIndex(std::min(m, n), S32, qr_body_fn,
{a, taus}, "qr", builder));
QrResult result;
result.a = values[0];
result.taus = values[1];
return result;
}
// Computes an upper triangular matrix T such that (I - Y @ T @ Y^t) is a
// product of the elementary Householder reflectors given by `vs` and `taus`.
//
// Schreiber, Robert, and Charles Van Loan. "A storage-efficient WY
// representation for products of Householder transformations." SIAM Journal on
// Scientific and Statistical Computing 10.1 (1989): 53-57.
//
// def compact_wy(vs, taus):
// m, n = vs.shape[-2:]
// t = np.eye(n) * -taus
// # We premultiply Y.T @ vs, since we would prefer to compute a single matrix
// # multiplication to many matrix-vector products.
// vtv = -taus[None, :] * np.triu(vs.T @ vs, 1) + np.eye(n)
// for i in range(1, n):
// t[:, i] = scipy.linalg.blas.strmm(t, vtv[:, i])
// return t
StatusOr<XlaOp> QrExpander::CompactWYRepresentation(
PrimitiveType type, absl::Span<const int64> batch_dims, XlaOp vs,
XlaOp taus, int64 m, int64 n, PrecisionConfig::Precision precision) {
XlaBuilder* builder = vs.builder();
std::vector<int64> batch_dim_indices(batch_dims.size());
std::iota(batch_dim_indices.begin(), batch_dim_indices.end(), 0);
int64 n_index = batch_dims.size() + 1;
auto body_fn = [&](XlaOp j, absl::Span<const XlaOp> values,
XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
// w has shape [..., m, n]
auto t = values[0];
const auto vtv = values[1];
// yv has shape [..., n, 1]
auto yv = DynamicSliceInMinorDims(vtv, {j}, {1});
// z has shape [..., n, 1]
auto z = BatchDot(t, yv, precision);
t = DynamicUpdateSliceInMinorDims(t, z, {j});
return std::vector<XlaOp>{t, vtv};
};
auto tau_scale = BroadcastInDim(-taus, ConcatVectors(batch_dims, {1, n}),
ConcatVectors(batch_dim_indices, {n_index}));
auto eye = Broadcast(IdentityMatrix(builder, type, n, n), batch_dims);
auto t = eye;
auto vtv =
BatchDot(vs, /*transpose_x=*/true, vs, /*transpose_y=*/false, precision);
vtv = Select(TriangleMask(vtv, 0), ZerosLike(vtv), vtv);
vtv = (vtv + eye) * tau_scale;
TF_ASSIGN_OR_RETURN(auto values,
ForEachIndex(n, S32, body_fn, {t, vtv}, "wy", builder));
return values[0];
}
// Block Householder QR Factorization. Algorithm 5.2.2 of Golub and van Loan.
// def qr_blocked(a, block_size):
// m = a.shape[0]
// n = a.shape[1]
// q = np.eye(m)
// for i in xrange(0, min(m, n), block_size):
// k = min(block_size, min(m, n) - s)
// (a, taus) = qr(a[i:, i:i+k])
// y = np.eye(m, n) + np.tril(a, -1)
// t = CompactWYRepresentation(vs, taus, m-i, k)
// a[i:, i+k:] += (y @ t.T) @ (y.T @ a[i:, i+k:])
// q[:, i:] += (q[:, i:] @ y) @ (y @ t.T).T
// return (q, a)
StatusOr<XlaOp> QrExpander::BuildQrDecomposition(
XlaOp a, int64 block_size, PrecisionConfig::Precision precision) {
XlaBuilder* builder = a.builder();
TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a));
const int num_dims = a_shape.rank();
if (num_dims < 2) {
return InvalidArgument("Arguments to QR must have rank >= 2: got shape %s",
a_shape.ToString());
}
PrimitiveType type = a_shape.element_type();
const int64 m = ShapeUtil::GetDimension(a_shape, -2);
const int64 n = ShapeUtil::GetDimension(a_shape, -1);
const int64 p = std::min(m, n);
if (block_size < 1) {
return InvalidArgument("block_size argument to QR must be >= 1; got %d",
block_size);
}
const int64 num_batch_dims = num_dims - 2;
std::vector<int64> batch_dims(num_batch_dims);
for (int i = 0; i < num_batch_dims; ++i) {
batch_dims[i] = ShapeUtil::GetDimension(a_shape, i);
}
auto q = Broadcast(IdentityMatrix(builder, type, m, m), batch_dims);
for (int64 i = 0; i < p; i += block_size) {
int64 k = std::min(block_size, p - i);
auto a_block = SliceInMinorDims(a, {i, i}, {m, i + k});
TF_ASSIGN_OR_RETURN(auto qr_block, QrBlock(a_block, precision));
auto y = Add(
IdentityMatrix(builder, type, m - i, k),
Select(TriangleMask(qr_block.a, -1), qr_block.a, ZerosLike(qr_block.a)),
/*broadcast_dimensions=*/{num_dims - 2, num_dims - 1});
a = UpdateSliceInMinorDims(a, qr_block.a, {i, i});
// Compute the I + Y @ T @ Y^t block representation of a product of
// Householder matrices.
TF_ASSIGN_OR_RETURN(
auto t, CompactWYRepresentation(type, batch_dims, y, qr_block.taus,
m - i, k, precision));
// a[i:, i+k:] += (y @ t.T) @ (y.T @ a[i:, i+k:])
auto yt =
BatchDot(y, /*transpose_x=*/false, t, /*transpose_y=*/true, precision);
auto a_panel = SliceInMinorDims(a, {i, i + k}, {m, n});
auto a_update = BatchDot(y, /*transpose_x=*/true, a_panel,
/*transpose_y=*/false, precision);
a_update = BatchDot(yt, a_update, precision);
a_panel = a_panel + a_update;
a = UpdateSliceInMinorDims(a, a_panel, {i, i + k});
// q[:, i:] += (q[:, i:] @ y) @ (y @ t.T).T
auto q_panel = SliceInMinorDims(q, {0, i}, {m, m});
auto q_update = BatchDot(q_panel, y, precision);
q_update = BatchDot(q_update, /*transpose_x=*/false, yt,
/*transpose_y=*/true, precision);
q_panel = q_panel + q_update;
q = UpdateSliceInMinorDims(q, q_panel, {0, i});
}
return Tuple(builder, {q, UpperTriangle(a)});
}
bool QrExpander::InstructionMatchesPattern(HloInstruction* instruction) {
return instruction->opcode() == HloOpcode::kCustomCall &&
instruction->custom_call_target() == "QrDecomposition";
}
StatusOr<HloInstruction*> QrExpander::ExpandInstruction(
HloInstruction* instruction) {
const string name =
absl::StrFormat("xla.qr_%s", instruction->operand(0)->shape().ToString());
HloModule* module = instruction->parent()->parent();
HloComputation*& computation =
computation_cache_.emplace(name, nullptr).first->second;
if (!computation) {
// Builds a new expansion.
//
// TODO(b/62327888): We do something unusual here: we build the computation
// using the XlaBuilder API, which is nominally an XLA client API. We do
// this because the external APIs for building complicated computations
// (XlaBuilder) are much more ergonomic than the internal ones. As it turns
// out, XlaBuilder isn't really a client API—what it does is build a
// HloModuleProto protocol buffer, that we can then deserialize and clone
// into our HloModule. Ideally we would avoid the protocol buffer step;
// that is left as an exercise for future work.
XlaBuilder builder(name);
XlaOp a = Parameter(&builder, 0, instruction->operand(0)->shape(), "a");
TF_ASSIGN_OR_RETURN(
XlaOp l, BuildQrDecomposition(a,
/*block_size=*/128,
/*precision=*/PrecisionConfig::HIGHEST));
TF_ASSIGN_OR_RETURN(XlaComputation xla_computation, builder.Build(l));
TF_ASSIGN_OR_RETURN(ProgramShape program_shape,
xla_computation.GetProgramShape());
HloModuleConfig config(program_shape);
TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto(
xla_computation.proto(), config));
HloCloneContext context(module);
computation =
module->DeepCloneComputation(new_module->entry_computation(), &context);
}
return instruction->parent()->AddInstruction(HloInstruction::CreateCall(
instruction->shape(), instruction->operands(), computation));
}
} // namespace xla

View File

@ -0,0 +1,61 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_XLA_SERVICE_QR_EXPANDER_H_
#define TENSORFLOW_COMPILER_XLA_SERVICE_QR_EXPANDER_H_
#include "absl/container/flat_hash_map.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/service/op_expander_pass.h"
namespace xla {
class QrExpander : public OpExpanderPass {
public:
absl::string_view name() const override { return "qr_expander"; }
protected:
bool InstructionMatchesPattern(HloInstruction* instruction) override;
StatusOr<HloInstruction*> ExpandInstruction(
HloInstruction* instruction) override;
struct QrResult {
// The upper-triangular matrix R, packed together with the lower-triangular
// elementary Householder reflectors `vs` below the diagonal.
XlaOp a;
// Representation of the Householder matrices I - beta v v.T
XlaOp taus; // Shape: [..., min(m, n)]
};
virtual StatusOr<QrResult> QrBlock(XlaOp a,
PrecisionConfig::Precision precision);
virtual StatusOr<XlaOp> CompactWYRepresentation(
PrimitiveType type, absl::Span<const int64> batch_dims, XlaOp vs,
XlaOp taus, int64 m, int64 n, PrecisionConfig::Precision precision);
private:
StatusOr<XlaOp> BuildQrDecomposition(XlaOp a, int64 block_size,
PrecisionConfig::Precision precision);
// Mapping from op signatures to existing computations.
absl::flat_hash_map<string, HloComputation*> computation_cache_;
};
} // namespace xla
#endif // TENSORFLOW_COMPILER_XLA_SERVICE_QR_EXPANDER_H_