Update private API usage of test_util. deprecated_graph_mode_only.

PiperOrigin-RevId: 321583859
Change-Id: I05d02f8f41792099fa9b225a09b4c109c981bfa7
This commit is contained in:
Scott Zhu 2020-07-16 09:38:12 -07:00 committed by TensorFlower Gardener
parent 960358aaa2
commit 11b8948857
3 changed files with 16 additions and 17 deletions
tensorflow/python/keras

View File

@ -23,7 +23,6 @@ import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.layers import dense_attention
@ -361,7 +360,6 @@ class AttentionTest(test.TestCase, parameterized.TestCase):
attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1]))
self.assertAllClose(1., attention_layer.scale.value())
@test_util.deprecated_graph_mode_only
def test_scale_init_graph(self):
"""Tests that scale initializes to 1 when use_scale=True."""
with self.cached_session() as sess:

View File

@ -106,19 +106,20 @@ class LossScaleOptimizerTest(test.TestCase, parameterized.TestCase):
# and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3
self.assertAllClose([3.], self.evaluate(var))
@test_util.deprecated_graph_mode_only
def testFixedLossScaleAppliedToLossWithGetGradients(self):
var = variables.Variable([2.0])
opt = gradient_descent.SGD(1.0)
loss_scale = 10.
opt = loss_scale_optimizer.LossScaleOptimizer(opt, loss_scale)
grad_check_fn = mp_test_util.create_identity_with_grad_check_fn(loss_scale)
loss = grad_check_fn(var)
run_op = opt.get_gradients(loss, [var])
self.evaluate(variables.global_variables_initializer())
# This will cause an assertion to run, as
# mp_test_util.create_identity_with_grad_check_fn added an assertion op.
self.evaluate(run_op)
with ops.Graph().as_default():
var = variables.Variable([2.0])
opt = gradient_descent.SGD(1.0)
loss_scale = 10.
opt = loss_scale_optimizer.LossScaleOptimizer(opt, loss_scale)
grad_check_fn = mp_test_util.create_identity_with_grad_check_fn(
loss_scale)
loss = grad_check_fn(var)
run_op = opt.get_gradients(loss, [var])
self.evaluate(variables.global_variables_initializer())
# This will cause an assertion to run, as
# mp_test_util.create_identity_with_grad_check_fn added an assertion op.
self.evaluate(run_op)
def testGetScaledLoss(self):
opt = gradient_descent.SGD(2.0)

View File

@ -23,7 +23,7 @@ from tensorflow.python import data
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.framework import config
from tensorflow.python.framework import test_util
from tensorflow.python.framework import ops
from tensorflow.python.keras.utils import multi_gpu_utils
from tensorflow.python.keras.utils import np_utils
from tensorflow.python.platform import test
@ -38,7 +38,7 @@ def check_if_compatible_devices(gpus=2):
return False
return True
@test_util.run_all_in_deprecated_graph_mode_only
class TestMultiGPUModel(test.TestCase):
def __init__(self, methodName='runTest'): # pylint: disable=invalid-name
@ -161,7 +161,7 @@ class TestMultiGPUModel(test.TestCase):
if not check_if_compatible_devices(gpus=gpus):
self.skipTest('multi gpu only')
with self.cached_session():
with ops.Graph().as_default(), self.cached_session():
input_shape = (num_samples,) + shape
x_train = np.random.randint(0, 255, input_shape)
y_train = np.random.randint(0, num_classes, (input_shape[0],))