Add prototype custom op for RandomStandardNormal.
PiperOrigin-RevId: 334414381 Change-Id: I0de25e8261c4a2d3f22d195b717942c83c1885ee
This commit is contained in:
parent
4cb5e1ebc3
commit
11823c6179
tensorflow/lite/kernels
@ -706,6 +706,7 @@ cc_library(
|
||||
"complex_support.cc",
|
||||
"cumsum.cc",
|
||||
"multinomial.cc",
|
||||
"random_standard_normal.cc",
|
||||
"rfft2d.cc",
|
||||
],
|
||||
hdrs = ["custom_ops_register.h"],
|
||||
@ -1375,6 +1376,20 @@ cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "random_standard_normal_test",
|
||||
size = "small",
|
||||
srcs = ["random_standard_normal_test.cc"],
|
||||
deps = [
|
||||
":custom_ops",
|
||||
":test_main",
|
||||
":test_util",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"//tensorflow/lite/testing:util",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "reshape_test_common",
|
||||
testonly = 1,
|
||||
|
@ -28,6 +28,7 @@ TfLiteRegistration* Register_HASHTABLE_IMPORT();
|
||||
TfLiteRegistration* Register_HASHTABLE_SIZE();
|
||||
TfLiteRegistration* Register_IMAG();
|
||||
TfLiteRegistration* Register_MULTINOMIAL();
|
||||
TfLiteRegistration* Register_RANDOM_STANDARD_NORMAL();
|
||||
TfLiteRegistration* Register_REAL();
|
||||
TfLiteRegistration* Register_RFFT2D();
|
||||
|
||||
|
127
tensorflow/lite/kernels/random_standard_normal.cc
Normal file
127
tensorflow/lite/kernels/random_standard_normal.cc
Normal file
@ -0,0 +1,127 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace custom {
|
||||
namespace random_standard_normal {
|
||||
|
||||
struct OpData {
|
||||
std::default_random_engine rng;
|
||||
};
|
||||
|
||||
// Draws a sample from standard normal distribution.
|
||||
template <typename Float>
|
||||
TfLiteStatus RandomStandardNormalSample(std::default_random_engine& rng,
|
||||
Float* output, size_t output_size) {
|
||||
std::normal_distribution<Float> dist;
|
||||
for (Float* it = output; it != output + output_size; ++it) {
|
||||
*it = dist(rng);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus RandomStandardNormalSample(TfLiteContext* context,
|
||||
std::default_random_engine& rng,
|
||||
TfLiteTensor* output,
|
||||
size_t output_size) {
|
||||
switch (output->type) {
|
||||
case kTfLiteFloat32:
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
RandomStandardNormalSample<float>(
|
||||
rng, GetTensorData<float>(output), output_size));
|
||||
break;
|
||||
case kTfLiteFloat64:
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
RandomStandardNormalSample<double>(
|
||||
rng, GetTensorData<double>(output), output_size));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Unsupported output datatype for RandomStandardNormal: %s",
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
return new OpData();
|
||||
}
|
||||
|
||||
void Free(TfLiteContext* context, void* buffer) {
|
||||
delete reinterpret_cast<OpData*>(buffer);
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
// TODO(b/169611265): Handle optional seed input.
|
||||
TF_LITE_ENSURE_EQ(context, tflite::NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, tflite::NumOutputs(node), 1);
|
||||
|
||||
// Input is a shape tensor.
|
||||
const TfLiteTensor* input = tflite::GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE_EQ(context, tflite::NumDimensions(input), 1);
|
||||
// TODO(b/169611265): Support dynamic output tensors.
|
||||
TF_LITE_ENSURE(context, IsConstantTensor(input));
|
||||
|
||||
// TODO(b/169611265): Handle other input data types.
|
||||
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt32);
|
||||
|
||||
int output_dims = tflite::SizeOfDimension(input, 0);
|
||||
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_dims);
|
||||
for (int i = 0; i < output_dims; i++) {
|
||||
output_shape->data[i] = input->data.i32[i];
|
||||
}
|
||||
|
||||
TfLiteTensor* output = tflite::GetOutput(context, node, 0);
|
||||
// ResizeTensor takes ownership of output_shape.
|
||||
return context->ResizeTensor(context, output, output_shape);
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
// TODO(b/169611265): Handle optional seed input.
|
||||
OpData* params = reinterpret_cast<OpData*>(node->user_data);
|
||||
TF_LITE_ENSURE(context, params != nullptr);
|
||||
|
||||
TfLiteTensor* output = tflite::GetOutput(context, node, 0);
|
||||
size_t output_size = tflite::NumElements(output);
|
||||
|
||||
TF_LITE_ENSURE_OK(context, RandomStandardNormalSample(context, params->rng,
|
||||
output, output_size));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace random_standard_normal
|
||||
|
||||
TfLiteRegistration* Register_RANDOM_STANDARD_NORMAL() {
|
||||
static TfLiteRegistration r = {
|
||||
random_standard_normal::Init, random_standard_normal::Free,
|
||||
random_standard_normal::Prepare, random_standard_normal::Eval};
|
||||
return &r;
|
||||
}
|
||||
|
||||
} // namespace custom
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
103
tensorflow/lite/kernels/random_standard_normal_test.cc
Normal file
103
tensorflow/lite/kernels/random_standard_normal_test.cc
Normal file
@ -0,0 +1,103 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
#include <gmock/gmock.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/kernels/custom_ops_register.h"
|
||||
#include "tensorflow/lite/kernels/test_util.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/testing/util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
tflite::TensorType GetTTEnum();
|
||||
|
||||
template <>
|
||||
tflite::TensorType GetTTEnum<float>() {
|
||||
return tflite::TensorType_FLOAT32;
|
||||
}
|
||||
|
||||
template <>
|
||||
tflite::TensorType GetTTEnum<double>() {
|
||||
return tflite::TensorType_FLOAT64;
|
||||
}
|
||||
|
||||
class RandomStandardNormalOpModel : public tflite::SingleOpModel {
|
||||
public:
|
||||
RandomStandardNormalOpModel(const std::initializer_list<int>& input,
|
||||
tflite::TensorData output) {
|
||||
input_ = AddConstInput(tflite::TensorType_INT32, input,
|
||||
{static_cast<int>(input.size())});
|
||||
output_ = AddOutput(output);
|
||||
SetCustomOp("RandomStandardNormal", {},
|
||||
ops::custom::Register_RANDOM_STANDARD_NORMAL);
|
||||
BuildInterpreter({GetShape(input_)});
|
||||
}
|
||||
|
||||
int input_;
|
||||
int output_;
|
||||
|
||||
int input() { return input_; }
|
||||
int output() { return output_; }
|
||||
|
||||
template <typename T>
|
||||
std::vector<T> GetOutput() {
|
||||
return ExtractVector<T>(output_);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
} // namespace tflite
|
||||
|
||||
template <typename FloatType>
|
||||
class RandomStandardNormalTest : public ::testing::Test {
|
||||
public:
|
||||
using Float = FloatType;
|
||||
};
|
||||
|
||||
using TestTypes = ::testing::Types<float, double>;
|
||||
|
||||
TYPED_TEST_SUITE(RandomStandardNormalTest, TestTypes);
|
||||
|
||||
TYPED_TEST(RandomStandardNormalTest, TestOutput) {
|
||||
using Float = typename TestFixture::Float;
|
||||
tflite::RandomStandardNormalOpModel m({1000, 50, 5},
|
||||
{tflite::GetTTEnum<Float>(), {}});
|
||||
m.Invoke();
|
||||
auto output = m.GetOutput<Float>();
|
||||
EXPECT_EQ(output.size(), 1000 * 50 * 5);
|
||||
|
||||
double sum = 0;
|
||||
for (auto r : output) {
|
||||
sum += r;
|
||||
}
|
||||
double avg = sum / output.size();
|
||||
ASSERT_LT(std::abs(avg), 0.05); // Average should approximately 0.
|
||||
|
||||
double sum_squared = 0;
|
||||
for (auto r : output) {
|
||||
sum_squared += std::pow(r - avg, 2);
|
||||
}
|
||||
double var = sum_squared / output.size();
|
||||
EXPECT_LT(std::abs(1 - var), 0.05); // Variance should be approximately 1.
|
||||
}
|
Loading…
Reference in New Issue
Block a user