Add deterministic mode for resize_bilinear back-prop
This commit is contained in:
parent
038edfbddd
commit
116db3235a
@ -23,6 +23,7 @@ limitations under the License.
|
|||||||
#include "tensorflow/core/framework/tensor_types.h"
|
#include "tensorflow/core/framework/tensor_types.h"
|
||||||
#include "tensorflow/core/kernels/image/resize_bilinear_op.h"
|
#include "tensorflow/core/kernels/image/resize_bilinear_op.h"
|
||||||
#include "tensorflow/core/platform/types.h"
|
#include "tensorflow/core/platform/types.h"
|
||||||
|
#include "tensorflow/core/util/env_var.h"
|
||||||
#include "tensorflow/core/util/gpu_kernel_helper.h"
|
#include "tensorflow/core/util/gpu_kernel_helper.h"
|
||||||
|
|
||||||
namespace tensorflow {
|
namespace tensorflow {
|
||||||
@ -228,6 +229,56 @@ __global__ void ResizeBilinearGradKernel(const int32 nthreads,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void ResizeBilinearDeterministicGradKernel(
|
||||||
|
const int32 nthreads, const float* __restrict__ input_grad,
|
||||||
|
float height_scale, float inverse_height_scale, float width_scale,
|
||||||
|
float inverse_width_scale, int batch, int original_height,
|
||||||
|
int original_width, int channels, int resized_height, int resized_width,
|
||||||
|
T* __restrict__ output_grad) {
|
||||||
|
GPU_1D_KERNEL_LOOP(out_idx, nthreads) {
|
||||||
|
// out_idx = c + channels * (x + original_width * (y + original_height * b))
|
||||||
|
int idx = out_idx;
|
||||||
|
const int c = idx % channels;
|
||||||
|
idx /= channels;
|
||||||
|
const int out_x_center = idx % original_width;
|
||||||
|
idx /= original_width;
|
||||||
|
const int out_y_center = idx % original_height;
|
||||||
|
const int b = idx / original_height;
|
||||||
|
|
||||||
|
int in_y_start = max(0, __float2int_ru(
|
||||||
|
(out_y_center - 1 + 0.5) * inverse_height_scale - 0.5));
|
||||||
|
const float out_y_start = (in_y_start + 0.5) * height_scale - 0.5;
|
||||||
|
int in_x_start = max(0, __float2int_ru(
|
||||||
|
(out_x_center - 1 + 0.5) * inverse_width_scale - 0.5));
|
||||||
|
const float out_x_start = (in_x_start + 0.5) * width_scale - 0.5;
|
||||||
|
T acc = 0;
|
||||||
|
// For clarity, prior to C++17, while loops are preferable to for loops here
|
||||||
|
float out_y = out_y_start; int in_y = in_y_start;
|
||||||
|
while(out_y < out_y_center + 1 && in_y < resized_height) {
|
||||||
|
float out_x = out_x_start; int in_x = in_x_start;
|
||||||
|
while(out_x < out_x_center + 1 && in_x < resized_width) {
|
||||||
|
int in_idx = ((b * resized_height + in_y) * resized_width + in_x) *
|
||||||
|
channels + c;
|
||||||
|
// Clamping to zero is necessary because out_x and out_y can be negative
|
||||||
|
// due to half-pixel adjustments to out_y_start and out_x_start.
|
||||||
|
// Clamping to height/width is necessary when upscaling.
|
||||||
|
float out_y_clamped = fmaxf(0, fminf(out_y, original_height - 1));
|
||||||
|
float out_x_clamped = fmaxf(0, fminf(out_x, original_width - 1));
|
||||||
|
float y_lerp = (1 - fabsf(out_y_clamped - out_y_center));
|
||||||
|
float x_lerp = (1 - fabsf(out_x_clamped - out_x_center));
|
||||||
|
acc += static_cast<T>(input_grad[in_idx] * y_lerp * x_lerp);
|
||||||
|
out_x += width_scale;
|
||||||
|
in_x++;
|
||||||
|
}
|
||||||
|
out_y += height_scale;
|
||||||
|
in_y++;
|
||||||
|
}
|
||||||
|
output_grad[out_idx] = acc;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__global__ void LegacyResizeBilinearKernel(
|
__global__ void LegacyResizeBilinearKernel(
|
||||||
const int32 nthreads, const T* __restrict__ images, float height_scale,
|
const int32 nthreads, const T* __restrict__ images, float height_scale,
|
||||||
@ -338,6 +389,55 @@ __global__ void LegacyResizeBilinearGradKernel(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void LegacyResizeBilinearDeterministicGradKernel(
|
||||||
|
const int32 nthreads, const float* __restrict__ input_grad,
|
||||||
|
float height_scale, float inverse_height_scale, float width_scale,
|
||||||
|
float inverse_width_scale, int batch, int original_height,
|
||||||
|
int original_width, int channels, int resized_height, int resized_width,
|
||||||
|
T* __restrict__ output_grad) {
|
||||||
|
GPU_1D_KERNEL_LOOP(out_idx, nthreads) {
|
||||||
|
// out_idx = c + channels * (x + original_width * (y + original_height * b))
|
||||||
|
int idx = out_idx;
|
||||||
|
const int c = idx % channels;
|
||||||
|
idx /= channels;
|
||||||
|
const int out_x_center = idx % original_width;
|
||||||
|
idx /= original_width;
|
||||||
|
const int out_y_center = idx % original_height;
|
||||||
|
const int b = idx / original_height;
|
||||||
|
|
||||||
|
int in_y_start = max(0, __float2int_ru(
|
||||||
|
(out_y_center - 1) * inverse_height_scale));
|
||||||
|
const float out_y_start = in_y_start * height_scale;
|
||||||
|
int in_x_start = max(0, __float2int_ru(
|
||||||
|
(out_x_center - 1) * inverse_width_scale));
|
||||||
|
const float out_x_start = in_x_start * width_scale;
|
||||||
|
T acc = 0;
|
||||||
|
// For clarity, prior to C++17, while loops are preferable to for loops here
|
||||||
|
float out_y = out_y_start; int in_y = in_y_start;
|
||||||
|
while(out_y < out_y_center + 1 && in_y < resized_height) {
|
||||||
|
float out_x = out_x_start; int in_x = in_x_start;
|
||||||
|
while(out_x < out_x_center + 1 && in_x < resized_width) {
|
||||||
|
int in_idx = ((b * resized_height + in_y) * resized_width + in_x) *
|
||||||
|
channels + c;
|
||||||
|
// Clamping to zero is unnecessary because out_x and out_y will never
|
||||||
|
// be less than zero in legacy mode.
|
||||||
|
// Clamping to height/width is necessary when upscaling.
|
||||||
|
float out_y_clamped = fminf(out_y, original_height - 1);
|
||||||
|
float out_x_clamped = fminf(out_x, original_width - 1);
|
||||||
|
float y_lerp = (1 - fabsf(out_y_clamped - out_y_center));
|
||||||
|
float x_lerp = (1 - fabsf(out_x_clamped - out_x_center));
|
||||||
|
acc += static_cast<T>(input_grad[in_idx] * y_lerp * x_lerp);
|
||||||
|
out_x += width_scale;
|
||||||
|
in_x++;
|
||||||
|
}
|
||||||
|
out_y += height_scale;
|
||||||
|
in_y++;
|
||||||
|
}
|
||||||
|
output_grad[out_idx] = acc;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
namespace functor {
|
namespace functor {
|
||||||
@ -394,6 +494,17 @@ struct ResizeBilinear<GPUDevice, T> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
bool RequireDeterminism() {
|
||||||
|
static bool require_determinism = [] {
|
||||||
|
bool deterministic_ops = false;
|
||||||
|
TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar("TF_DETERMINISTIC_OPS",
|
||||||
|
/*default_val=*/false,
|
||||||
|
&deterministic_ops));
|
||||||
|
return deterministic_ops;
|
||||||
|
}();
|
||||||
|
return require_determinism;
|
||||||
|
}
|
||||||
|
|
||||||
// Partial specialization of ResizeBilinearGrad functor for a GPUDevice.
|
// Partial specialization of ResizeBilinearGrad functor for a GPUDevice.
|
||||||
template <typename T>
|
template <typename T>
|
||||||
struct ResizeBilinearGrad<GPUDevice, T> {
|
struct ResizeBilinearGrad<GPUDevice, T> {
|
||||||
@ -413,31 +524,53 @@ struct ResizeBilinearGrad<GPUDevice, T> {
|
|||||||
int total_count;
|
int total_count;
|
||||||
GpuLaunchConfig config;
|
GpuLaunchConfig config;
|
||||||
|
|
||||||
// Initialize output_grad with all zeros.
|
|
||||||
total_count = batch * original_height * original_width * channels;
|
total_count = batch * original_height * original_width * channels;
|
||||||
if (total_count == 0) return;
|
if (total_count == 0) return;
|
||||||
config = GetGpuLaunchConfig(total_count, d);
|
config = GetGpuLaunchConfig(total_count, d);
|
||||||
TF_CHECK_OK(GpuLaunchKernel(
|
|
||||||
SetZero<T>, config.block_count, config.thread_per_block, 0, d.stream(),
|
|
||||||
config.virtual_thread_count, output_grad.data()));
|
|
||||||
|
|
||||||
// Accumulate.
|
if (RequireDeterminism()) {
|
||||||
total_count = batch * resized_height * resized_width * channels;
|
// The following scale values below should never be zero, enforced by
|
||||||
config = GetGpuLaunchConfig(total_count, d);
|
// ImageResizerGradientState
|
||||||
if (half_pixel_centers) {
|
float inverse_height_scale = 1 / height_scale;
|
||||||
TF_CHECK_OK(GpuLaunchKernel(
|
float inverse_width_scale = 1 / width_scale;
|
||||||
ResizeBilinearGradKernel<T>, config.block_count,
|
if (half_pixel_centers) {
|
||||||
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
TF_CHECK_OK(GpuLaunchKernel(
|
||||||
input_grad.data(), height_scale, width_scale, batch, original_height,
|
ResizeBilinearDeterministicGradKernel<T>, config.block_count,
|
||||||
original_width, channels, resized_height, resized_width,
|
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
||||||
output_grad.data()));
|
input_grad.data(), height_scale, inverse_height_scale, width_scale,
|
||||||
|
inverse_width_scale, batch, original_height, original_width,
|
||||||
|
channels, resized_height, resized_width, output_grad.data()));
|
||||||
|
} else {
|
||||||
|
TF_CHECK_OK(GpuLaunchKernel(
|
||||||
|
LegacyResizeBilinearDeterministicGradKernel<T>, config.block_count,
|
||||||
|
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
||||||
|
input_grad.data(), height_scale, inverse_height_scale, width_scale,
|
||||||
|
inverse_width_scale, batch, original_height, original_width,
|
||||||
|
channels, resized_height, resized_width, output_grad.data()));
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
|
// Initialize output_grad with all zeros.
|
||||||
TF_CHECK_OK(GpuLaunchKernel(
|
TF_CHECK_OK(GpuLaunchKernel(
|
||||||
LegacyResizeBilinearGradKernel<T>, config.block_count,
|
SetZero<T>, config.block_count, config.thread_per_block, 0,
|
||||||
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
d.stream(), config.virtual_thread_count, output_grad.data()));
|
||||||
input_grad.data(), height_scale, width_scale, batch, original_height,
|
// Accumulate.
|
||||||
original_width, channels, resized_height, resized_width,
|
total_count = batch * resized_height * resized_width * channels;
|
||||||
output_grad.data()));
|
config = GetGpuLaunchConfig(total_count, d);
|
||||||
|
if (half_pixel_centers) {
|
||||||
|
TF_CHECK_OK(GpuLaunchKernel(
|
||||||
|
ResizeBilinearGradKernel<T>, config.block_count,
|
||||||
|
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
||||||
|
input_grad.data(), height_scale, width_scale, batch,
|
||||||
|
original_height, original_width, channels, resized_height,
|
||||||
|
resized_width, output_grad.data()));
|
||||||
|
} else {
|
||||||
|
TF_CHECK_OK(GpuLaunchKernel(
|
||||||
|
LegacyResizeBilinearGradKernel<T>, config.block_count,
|
||||||
|
config.thread_per_block, 0, d.stream(), config.virtual_thread_count,
|
||||||
|
input_grad.data(), height_scale, width_scale, batch,
|
||||||
|
original_height, original_width, channels, resized_height,
|
||||||
|
resized_width, output_grad.data()));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -192,6 +192,19 @@ struct ImageResizerGradientState {
|
|||||||
original_height = original_image.dim_size(1);
|
original_height = original_image.dim_size(1);
|
||||||
original_width = original_image.dim_size(2);
|
original_width = original_image.dim_size(2);
|
||||||
|
|
||||||
|
// The following check is also carried out for the forward op. It is added
|
||||||
|
// here to prevent a divide-by-zero exception when either height_scale or
|
||||||
|
// width_scale is being calculated.
|
||||||
|
OP_REQUIRES(context, resized_height > 0 && resized_width > 0,
|
||||||
|
errors::InvalidArgument("resized dimensions must be positive"));
|
||||||
|
|
||||||
|
// The following check is also carried out for the forward op. It is added
|
||||||
|
// here to prevent either height_scale or width_scale from being set to
|
||||||
|
// zero, which would cause a divide-by-zero exception in the deterministic
|
||||||
|
// back-prop path.
|
||||||
|
OP_REQUIRES(context, original_height > 0 && original_width > 0,
|
||||||
|
errors::InvalidArgument("original dimensions must be positive"));
|
||||||
|
|
||||||
OP_REQUIRES(
|
OP_REQUIRES(
|
||||||
context,
|
context,
|
||||||
FastBoundsCheck(original_height, std::numeric_limits<int32>::max()) &&
|
FastBoundsCheck(original_height, std::numeric_limits<int32>::max()) &&
|
||||||
|
@ -5174,12 +5174,30 @@ cuda_py_test(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cuda_py_test(
|
||||||
|
name = "image_grad_deterministic_test",
|
||||||
|
size = "medium",
|
||||||
|
srcs = ["ops/image_grad_deterministic_test.py"],
|
||||||
|
python_version = "PY3",
|
||||||
|
deps = [
|
||||||
|
":image_grad_test_base",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
cuda_py_test(
|
cuda_py_test(
|
||||||
name = "image_grad_test",
|
name = "image_grad_test",
|
||||||
size = "medium",
|
size = "medium",
|
||||||
srcs = ["ops/image_grad_test.py"],
|
srcs = ["ops/image_grad_test.py"],
|
||||||
python_version = "PY3",
|
python_version = "PY3",
|
||||||
tfrt_enabled = True,
|
tfrt_enabled = True,
|
||||||
|
deps = [
|
||||||
|
":image_grad_test_base",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "image_grad_test_base",
|
||||||
|
srcs = ["ops/image_grad_test_base.py"],
|
||||||
deps = [
|
deps = [
|
||||||
":client_testlib",
|
":client_testlib",
|
||||||
":framework_for_generated_wrappers",
|
":framework_for_generated_wrappers",
|
||||||
|
123
tensorflow/python/ops/image_grad_deterministic_test.py
Normal file
123
tensorflow/python/ops/image_grad_deterministic_test.py
Normal file
@ -0,0 +1,123 @@
|
|||||||
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Functional tests for deterministic image op gradient functions."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from absl.testing import parameterized
|
||||||
|
|
||||||
|
from tensorflow.python.eager import backprop
|
||||||
|
from tensorflow.python.eager import context
|
||||||
|
from tensorflow.python.framework import constant_op
|
||||||
|
from tensorflow.python.framework import dtypes
|
||||||
|
from tensorflow.python.framework import test_util
|
||||||
|
from tensorflow.python.ops import array_ops
|
||||||
|
from tensorflow.python.ops import gradients_impl
|
||||||
|
from tensorflow.python.ops import image_grad_test_base as test_base
|
||||||
|
from tensorflow.python.ops import image_ops
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
|
||||||
|
|
||||||
|
class ResizeBilinearOpDeterministicTest(test_base.ResizeBilinearOpTestBase):
|
||||||
|
|
||||||
|
def _randomNDArray(self, shape):
|
||||||
|
return 2 * np.random.random_sample(shape) - 1
|
||||||
|
|
||||||
|
def _randomDataOp(self, shape, data_type):
|
||||||
|
return constant_op.constant(self._randomNDArray(shape), dtype=data_type)
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
# Note that there is no 16-bit floating point format registered for GPU
|
||||||
|
{'align_corners': False, 'half_pixel_centers': False,
|
||||||
|
'data_type': dtypes.float32},
|
||||||
|
{'align_corners': False, 'half_pixel_centers': False,
|
||||||
|
'data_type': dtypes.float64},
|
||||||
|
{'align_corners': True, 'half_pixel_centers': False,
|
||||||
|
'data_type': dtypes.float32},
|
||||||
|
{'align_corners': False, 'half_pixel_centers': True,
|
||||||
|
'data_type': dtypes.float32})
|
||||||
|
@test_util.run_in_graph_and_eager_modes
|
||||||
|
@test_util.run_cuda_only
|
||||||
|
def testDeterministicGradients(self, align_corners, half_pixel_centers,
|
||||||
|
data_type):
|
||||||
|
if not align_corners and test_util.is_xla_enabled():
|
||||||
|
# Align corners is deprecated in TF2.0, but align_corners==False is not
|
||||||
|
# supported by XLA.
|
||||||
|
self.skipTest("align_corners==False not currently supported by XLA")
|
||||||
|
with self.session(force_gpu=True):
|
||||||
|
seed = (hash(align_corners) % 256 + hash(half_pixel_centers) %256 +
|
||||||
|
hash(data_type) % 256)
|
||||||
|
np.random.seed(seed)
|
||||||
|
input_shape = (1, 25, 12, 3) # NHWC
|
||||||
|
output_shape = (1, 200, 250, 3)
|
||||||
|
input_image = self._randomDataOp(input_shape, data_type)
|
||||||
|
repeat_count = 3
|
||||||
|
if context.executing_eagerly():
|
||||||
|
|
||||||
|
def resize_bilinear_gradients(local_seed):
|
||||||
|
np.random.seed(local_seed)
|
||||||
|
upstream_gradients = self._randomDataOp(output_shape, dtypes.float32)
|
||||||
|
with backprop.GradientTape(persistent=True) as tape:
|
||||||
|
tape.watch(input_image)
|
||||||
|
output_image = image_ops.resize_bilinear(
|
||||||
|
input_image, output_shape[1:3], align_corners=align_corners,
|
||||||
|
half_pixel_centers=half_pixel_centers)
|
||||||
|
gradient_injector_output = output_image * upstream_gradients
|
||||||
|
return tape.gradient(gradient_injector_output, input_image)
|
||||||
|
|
||||||
|
for i in range(repeat_count):
|
||||||
|
local_seed = seed + i # select different upstream gradients
|
||||||
|
result_a = resize_bilinear_gradients(local_seed)
|
||||||
|
result_b = resize_bilinear_gradients(local_seed)
|
||||||
|
self.assertAllEqual(result_a, result_b)
|
||||||
|
else: # graph mode
|
||||||
|
upstream_gradients = array_ops.placeholder(
|
||||||
|
dtypes.float32, shape=output_shape, name='upstream_gradients')
|
||||||
|
output_image = image_ops.resize_bilinear(
|
||||||
|
input_image, output_shape[1:3], align_corners=align_corners,
|
||||||
|
half_pixel_centers=half_pixel_centers)
|
||||||
|
gradient_injector_output = output_image * upstream_gradients
|
||||||
|
# The gradient function behaves as if grad_ys is multiplied by the op
|
||||||
|
# gradient result, not passing the upstram gradients through the op's
|
||||||
|
# gradient generation graph. This is the reason for using the
|
||||||
|
# gradient injector
|
||||||
|
resize_bilinear_gradients = gradients_impl.gradients(
|
||||||
|
gradient_injector_output, input_image, grad_ys=None,
|
||||||
|
colocate_gradients_with_ops=True)[0]
|
||||||
|
for i in range(repeat_count):
|
||||||
|
feed_dict = {upstream_gradients: self._randomNDArray(output_shape)}
|
||||||
|
result_a = resize_bilinear_gradients.eval(feed_dict=feed_dict)
|
||||||
|
result_b = resize_bilinear_gradients.eval(feed_dict=feed_dict)
|
||||||
|
self.assertAllEqual(result_a, result_b)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Note that the effect of setting the following environment variable to
|
||||||
|
# 'true' is not tested. Unless we can find a simpler pattern for testing these
|
||||||
|
# environment variables, it would require this file to be made into a base
|
||||||
|
# and then two more test files to be created.
|
||||||
|
#
|
||||||
|
# When deterministic op functionality can be enabled and disabled between test
|
||||||
|
# cases in the same process, then the tests for deterministic op
|
||||||
|
# functionality, for this op and for other ops, will be able to be included in
|
||||||
|
# the same file with the regular tests, simplifying the organization of tests
|
||||||
|
# and test files.
|
||||||
|
os.environ['TF_DETERMINISTIC_OPS'] = '1'
|
||||||
|
test.main()
|
32
tensorflow/python/ops/image_grad_test.py
Normal file
32
tensorflow/python/ops/image_grad_test.py
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Functional tests for Image Op Gradients."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from tensorflow.python.ops import image_grad_test_base as test_base
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
|
||||||
|
ResizeNearestNeighborOpTest = test_base.ResizeNearestNeighborOpTestBase
|
||||||
|
ResizeBilinearOpTest = test_base.ResizeBilinearOpTestBase
|
||||||
|
ResizeBicubicOpTest = test_base.ResizeBicubicOpTestBase
|
||||||
|
ScaleAndTranslateOpTest = test_base.ScaleAndTranslateOpTestBase
|
||||||
|
CropAndResizeOpTest = test_base.CropAndResizeOpTestBase
|
||||||
|
RGBToHSVOpTest = test_base.RGBToHSVOpTestBase
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test.main()
|
@ -20,6 +20,8 @@ from __future__ import print_function
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from absl.testing import parameterized
|
||||||
|
|
||||||
from tensorflow.python.eager import backprop
|
from tensorflow.python.eager import backprop
|
||||||
from tensorflow.python.framework import constant_op
|
from tensorflow.python.framework import constant_op
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
@ -35,7 +37,7 @@ from tensorflow.python.ops import array_ops
|
|||||||
|
|
||||||
@test_util.for_all_test_methods(test_util.disable_xla,
|
@test_util.for_all_test_methods(test_util.disable_xla,
|
||||||
'align_corners=False not supported by XLA')
|
'align_corners=False not supported by XLA')
|
||||||
class ResizeNearestNeighborOpTest(test.TestCase):
|
class ResizeNearestNeighborOpTestBase(test.TestCase):
|
||||||
|
|
||||||
TYPES = [np.float32, np.float64]
|
TYPES = [np.float32, np.float64]
|
||||||
|
|
||||||
@ -111,97 +113,140 @@ class ResizeNearestNeighborOpTest(test.TestCase):
|
|||||||
self.assertAllClose(grad_cpu, grad_gpu, rtol=1e-5, atol=1e-5)
|
self.assertAllClose(grad_cpu, grad_gpu, rtol=1e-5, atol=1e-5)
|
||||||
|
|
||||||
|
|
||||||
class ResizeBilinearOpTest(test.TestCase):
|
class ResizeBilinearOpTestBase(test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
def testShapeIsCorrectAfterOp(self):
|
def _itGen(self, smaller_shape, larger_shape):
|
||||||
in_shape = [1, 2, 2, 1]
|
up_sample = (smaller_shape, larger_shape)
|
||||||
out_shape = [1, 4, 6, 1]
|
down_sample = (larger_shape, smaller_shape)
|
||||||
|
pass_through = (larger_shape, larger_shape)
|
||||||
x = np.arange(0, 4).reshape(in_shape).astype(np.float32)
|
shape_pairs = (up_sample, down_sample, pass_through)
|
||||||
|
# Align corners is deprecated in TF2.0, but align_corners==False is not
|
||||||
input_tensor = constant_op.constant(x, shape=in_shape)
|
|
||||||
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
|
||||||
with self.cached_session():
|
|
||||||
self.assertEqual(out_shape, list(resize_out.get_shape()))
|
|
||||||
resize_out = self.evaluate(resize_out)
|
|
||||||
self.assertEqual(out_shape, list(resize_out.shape))
|
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
|
||||||
def testGradFromResizeToLargerInBothDims(self):
|
|
||||||
in_shape = [1, 2, 3, 1]
|
|
||||||
out_shape = [1, 4, 6, 1]
|
|
||||||
|
|
||||||
x = np.arange(0, 6).reshape(in_shape).astype(np.float32)
|
|
||||||
|
|
||||||
with self.cached_session():
|
|
||||||
input_tensor = constant_op.constant(x, shape=in_shape)
|
|
||||||
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
|
||||||
err = gradient_checker.compute_gradient_error(
|
|
||||||
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
|
|
||||||
self.assertLess(err, 1e-3)
|
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
|
||||||
def testGradFromResizeToSmallerInBothDims(self):
|
|
||||||
in_shape = [1, 4, 6, 1]
|
|
||||||
out_shape = [1, 2, 3, 1]
|
|
||||||
|
|
||||||
x = np.arange(0, 24).reshape(in_shape).astype(np.float32)
|
|
||||||
|
|
||||||
with self.cached_session():
|
|
||||||
input_tensor = constant_op.constant(x, shape=in_shape)
|
|
||||||
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
|
||||||
err = gradient_checker.compute_gradient_error(
|
|
||||||
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
|
|
||||||
self.assertLess(err, 1e-3)
|
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
|
||||||
def testCompareGpuVsCpu(self):
|
|
||||||
in_shape = [2, 4, 6, 3]
|
|
||||||
out_shape = [2, 8, 16, 3]
|
|
||||||
|
|
||||||
size = np.prod(in_shape)
|
|
||||||
x = 1.0 / size * np.arange(0, size).reshape(in_shape).astype(np.float32)
|
|
||||||
|
|
||||||
# Align corners will be deprecated for tf2.0 and the false version is not
|
|
||||||
# supported by XLA.
|
# supported by XLA.
|
||||||
align_corner_options = [True
|
options = [(True, False)]
|
||||||
] if test_util.is_xla_enabled() else [True, False]
|
if not test_util.is_xla_enabled():
|
||||||
for align_corners in align_corner_options:
|
options += [(False, True), (False, False)]
|
||||||
grad = {}
|
for align_corners, half_pixel_centers in options:
|
||||||
for use_gpu in [False, True]:
|
for in_shape, out_shape in shape_pairs:
|
||||||
with self.cached_session(use_gpu=use_gpu):
|
yield in_shape, out_shape, align_corners, half_pixel_centers
|
||||||
input_tensor = constant_op.constant(x, shape=in_shape)
|
|
||||||
resized_tensor = image_ops.resize_bilinear(
|
|
||||||
input_tensor, out_shape[1:3], align_corners=align_corners)
|
|
||||||
grad[use_gpu] = gradient_checker.compute_gradient(
|
|
||||||
input_tensor, in_shape, resized_tensor, out_shape, x_init_value=x)
|
|
||||||
|
|
||||||
self.assertAllClose(grad[False], grad[True], rtol=1e-4, atol=1e-4)
|
def _getJacobians(self, in_shape, out_shape, align_corners=False,
|
||||||
|
half_pixel_centers=False, dtype=np.float32, use_gpu=False,
|
||||||
|
force_gpu=False):
|
||||||
|
with self.cached_session(use_gpu=use_gpu, force_gpu=force_gpu) as sess:
|
||||||
|
# Input values should not influence gradients
|
||||||
|
x = np.arange(np.prod(in_shape)).reshape(in_shape).astype(dtype)
|
||||||
|
input_tensor = constant_op.constant(x, shape=in_shape)
|
||||||
|
resized_tensor = image_ops.resize_bilinear(
|
||||||
|
input_tensor, out_shape[1:3], align_corners=align_corners,
|
||||||
|
half_pixel_centers=half_pixel_centers)
|
||||||
|
# compute_gradient will use a random tensor as the init value
|
||||||
|
return gradient_checker.compute_gradient(
|
||||||
|
input_tensor, in_shape, resized_tensor, out_shape)
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
{'batch_size': 1, 'channel_count': 1},
|
||||||
|
{'batch_size': 2, 'channel_count': 3},
|
||||||
|
{'batch_size': 5, 'channel_count': 4})
|
||||||
|
@test_util.run_deprecated_v1
|
||||||
|
def testShapes(self, batch_size, channel_count):
|
||||||
|
smaller_shape = [batch_size, 2, 3, channel_count]
|
||||||
|
larger_shape = [batch_size, 4, 6, channel_count]
|
||||||
|
for in_shape, out_shape, align_corners, half_pixel_centers in \
|
||||||
|
self._itGen(smaller_shape, larger_shape):
|
||||||
|
# Input values should not influence shapes
|
||||||
|
x = np.arange(np.prod(in_shape)).reshape(in_shape).astype(np.float32)
|
||||||
|
input_tensor = constant_op.constant(x, shape=in_shape)
|
||||||
|
resized_tensor = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
||||||
|
self.assertEqual(out_shape, list(resized_tensor.get_shape()))
|
||||||
|
grad_tensor = gradients_impl.gradients(resized_tensor, input_tensor)[0]
|
||||||
|
self.assertEqual(in_shape, list(grad_tensor.get_shape()))
|
||||||
|
with self.cached_session():
|
||||||
|
resized_values = self.evaluate(resized_tensor)
|
||||||
|
self.assertEqual(out_shape, list(resized_values.shape))
|
||||||
|
grad_values = self.evaluate(grad_tensor)
|
||||||
|
self.assertEqual(in_shape, list(grad_values.shape))
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
{'batch_size': 1, 'channel_count': 1},
|
||||||
|
{'batch_size': 4, 'channel_count': 3},
|
||||||
|
{'batch_size': 3, 'channel_count': 2})
|
||||||
|
@test_util.run_deprecated_v1
|
||||||
|
def testGradients(self, batch_size, channel_count):
|
||||||
|
smaller_shape = [batch_size, 2, 3, channel_count]
|
||||||
|
larger_shape = [batch_size, 5, 6, channel_count]
|
||||||
|
for in_shape, out_shape, align_corners, half_pixel_centers in \
|
||||||
|
self._itGen(smaller_shape, larger_shape):
|
||||||
|
jacob_a, jacob_n = self._getJacobians(
|
||||||
|
in_shape, out_shape, align_corners, half_pixel_centers)
|
||||||
|
threshold = 1e-4
|
||||||
|
self.assertAllClose(jacob_a, jacob_n, threshold, threshold)
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
@test_util.run_deprecated_v1
|
||||||
def testTypes(self):
|
def testTypes(self):
|
||||||
in_shape = [1, 4, 6, 1]
|
in_shape = [1, 4, 6, 1]
|
||||||
out_shape = [1, 2, 3, 1]
|
out_shape = [1, 2, 3, 1]
|
||||||
x = np.arange(0, 24).reshape(in_shape)
|
|
||||||
|
|
||||||
for use_gpu in [False, True]:
|
for use_gpu in [False, True]:
|
||||||
with self.cached_session(use_gpu=use_gpu) as sess:
|
for dtype in [np.float16, np.float32, np.float64]:
|
||||||
for dtype in [np.float16, np.float32, np.float64]:
|
jacob_a, jacob_n = self._getJacobians(
|
||||||
input_tensor = constant_op.constant(x.astype(dtype), shape=in_shape)
|
in_shape, out_shape, dtype=dtype, use_gpu=use_gpu)
|
||||||
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
if dtype == np.float16:
|
||||||
grad = sess.run(gradients_impl.gradients(resize_out, input_tensor))[0]
|
# Compare fp16 analytical gradients to fp32 numerical gradients,
|
||||||
self.assertAllEqual(in_shape, grad.shape)
|
# since fp16 numerical gradients are too imprecise unless great
|
||||||
# Not using gradient_checker.compute_gradient as I didn't work out
|
# care is taken with choosing the inputs and the delta. This is
|
||||||
# the changes required to compensate for the lower precision of
|
# a weaker, but pragmatic, check (in particular, it does not test
|
||||||
# float16 when computing the numeric jacobian.
|
# the op itself, only its gradient).
|
||||||
# Instead, we just test the theoretical jacobian.
|
_, jacob_n = self._getJacobians(
|
||||||
self.assertAllEqual([[[[1.], [0.], [1.], [0.], [1.], [0.]],
|
in_shape, out_shape, dtype=np.float32, use_gpu=use_gpu)
|
||||||
[[0.], [0.], [0.], [0.], [0.], [0.]],
|
threshold = 1e-3
|
||||||
[[1.], [0.], [1.], [0.], [1.], [0.]],
|
if dtype == np.float64:
|
||||||
[[0.], [0.], [0.], [0.], [0.], [0.]]]], grad)
|
threshold = 1e-5
|
||||||
|
self.assertAllClose(jacob_a, jacob_n, threshold, threshold)
|
||||||
|
|
||||||
|
@test_util.run_deprecated_v1
|
||||||
|
def testGradOnUnsupportedType(self):
|
||||||
|
in_shape = [1, 4, 6, 1]
|
||||||
|
out_shape = [1, 2, 3, 1]
|
||||||
|
|
||||||
|
x = np.arange(0, 24).reshape(in_shape).astype(np.uint8)
|
||||||
|
|
||||||
|
input_tensor = constant_op.constant(x, shape=in_shape)
|
||||||
|
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
|
||||||
|
with self.cached_session():
|
||||||
|
grad = gradients_impl.gradients(resize_out, [input_tensor])
|
||||||
|
self.assertEqual([None], grad)
|
||||||
|
|
||||||
|
def _gpuVsCpuCase(self, in_shape, out_shape, align_corners,
|
||||||
|
half_pixel_centers, dtype):
|
||||||
|
grad = {}
|
||||||
|
for use_gpu in [False, True]:
|
||||||
|
grad[use_gpu] = self._getJacobians(
|
||||||
|
in_shape, out_shape, align_corners, half_pixel_centers, dtype=dtype,
|
||||||
|
use_gpu=use_gpu)
|
||||||
|
threshold = 1e-4
|
||||||
|
# Note that this is comparing both analytical and numerical Jacobians
|
||||||
|
self.assertAllClose(grad[False], grad[True], rtol=threshold, atol=threshold)
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
{'batch_size': 1, 'channel_count': 1},
|
||||||
|
{'batch_size': 2, 'channel_count': 3},
|
||||||
|
{'batch_size': 5, 'channel_count': 4})
|
||||||
|
@test_util.run_deprecated_v1
|
||||||
|
def testCompareGpuVsCpu(self, batch_size, channel_count):
|
||||||
|
smaller_shape = [batch_size, 4, 6, channel_count]
|
||||||
|
larger_shape = [batch_size, 8, 16, channel_count]
|
||||||
|
for params in self._itGen(smaller_shape, larger_shape):
|
||||||
|
self._gpuVsCpuCase(*params, dtype=np.float32)
|
||||||
|
|
||||||
|
@test_util.run_deprecated_v1
|
||||||
|
def testCompareGpuVsCpuFloat64(self):
|
||||||
|
in_shape = [1, 5, 7, 1]
|
||||||
|
out_shape = [1, 9, 11, 1]
|
||||||
|
# Note that there is no 16-bit floating-point format registered for GPU
|
||||||
|
self._gpuVsCpuCase(in_shape, out_shape, align_corners=True,
|
||||||
|
half_pixel_centers=False, dtype=np.float64)
|
||||||
|
|
||||||
|
|
||||||
class ResizeBicubicOpTest(test.TestCase):
|
class ResizeBicubicOpTestBase(test.TestCase):
|
||||||
|
|
||||||
def testShapeIsCorrectAfterOp(self):
|
def testShapeIsCorrectAfterOp(self):
|
||||||
in_shape = [1, 2, 2, 1]
|
in_shape = [1, 2, 2, 1]
|
||||||
@ -264,7 +309,7 @@ class ResizeBicubicOpTest(test.TestCase):
|
|||||||
self.assertEqual([None], grad)
|
self.assertEqual([None], grad)
|
||||||
|
|
||||||
|
|
||||||
class ScaleAndTranslateOpTest(test.TestCase):
|
class ScaleAndTranslateOpTestBase(test.TestCase):
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
@test_util.run_deprecated_v1
|
||||||
def testGrads(self):
|
def testGrads(self):
|
||||||
@ -328,7 +373,7 @@ class ScaleAndTranslateOpTest(test.TestCase):
|
|||||||
self.assertAllClose(np.ones_like(grad_v), grad_v)
|
self.assertAllClose(np.ones_like(grad_v), grad_v)
|
||||||
|
|
||||||
|
|
||||||
class CropAndResizeOpTest(test.TestCase):
|
class CropAndResizeOpTestBase(test.TestCase):
|
||||||
|
|
||||||
def testShapeIsCorrectAfterOp(self):
|
def testShapeIsCorrectAfterOp(self):
|
||||||
batch = 2
|
batch = 2
|
||||||
@ -457,7 +502,7 @@ class CropAndResizeOpTest(test.TestCase):
|
|||||||
|
|
||||||
|
|
||||||
@test_util.run_all_in_graph_and_eager_modes
|
@test_util.run_all_in_graph_and_eager_modes
|
||||||
class RGBToHSVOpTest(test.TestCase):
|
class RGBToHSVOpTestBase(test.TestCase):
|
||||||
|
|
||||||
TYPES = [np.float32, np.float64]
|
TYPES = [np.float32, np.float64]
|
||||||
|
|
||||||
|
@ -142,6 +142,7 @@ COMMON_PIP_DEPS = [
|
|||||||
"//tensorflow/python/tools:tools_pip",
|
"//tensorflow/python/tools:tools_pip",
|
||||||
"//tensorflow/python/tools/api/generator:create_python_api",
|
"//tensorflow/python/tools/api/generator:create_python_api",
|
||||||
"//tensorflow/python/tpu",
|
"//tensorflow/python/tpu",
|
||||||
|
"//tensorflow/python:image_grad_test_base",
|
||||||
"//tensorflow/python:test_ops",
|
"//tensorflow/python:test_ops",
|
||||||
"//tensorflow/python:while_v2",
|
"//tensorflow/python:while_v2",
|
||||||
"//tensorflow/tools/common:public_api",
|
"//tensorflow/tools/common:public_api",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user