Making Softmax in OpenCL in 3 passes.
Improves numerical stability. PiperOrigin-RevId: 347941516 Change-Id: Ibe344c9922e1e267501f42ce1123ec943ee3eb97
This commit is contained in:
		
							parent
							
								
									9a03eedc45
								
							
						
					
					
						commit
						115623e2fc
					
				@ -59,6 +59,44 @@ TEST_F(OpenCLOperationTest, Softmax1x1) {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					TEST_F(OpenCLOperationTest, Softmax1x1BigNumber) {
 | 
				
			||||||
 | 
					  TensorFloat32 src_tensor;
 | 
				
			||||||
 | 
					  src_tensor.shape = BHWC(1, 1, 1, 4);
 | 
				
			||||||
 | 
					  double doubles[4] = {1.0, 2.0, 3.0, 100.0};
 | 
				
			||||||
 | 
					  // exp(100) is inf in float (32 bit) but representable in double (64 bit)
 | 
				
			||||||
 | 
					  src_tensor.data.resize(4);
 | 
				
			||||||
 | 
					  src_tensor.data[0] = doubles[0];
 | 
				
			||||||
 | 
					  src_tensor.data[1] = doubles[1];
 | 
				
			||||||
 | 
					  src_tensor.data[2] = doubles[2];
 | 
				
			||||||
 | 
					  src_tensor.data[3] = doubles[3];
 | 
				
			||||||
 | 
					  EXPECT_TRUE(std::isinf(std::exp(src_tensor.data[3])));
 | 
				
			||||||
 | 
					  EXPECT_FALSE(std::isinf(std::exp(doubles[3])));
 | 
				
			||||||
 | 
					  double s0 = std::exp(doubles[0]) + std::exp(doubles[1]) +
 | 
				
			||||||
 | 
					              std::exp(doubles[2]) + std::exp(doubles[3]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (auto storage : env_.GetSupportedStorages()) {
 | 
				
			||||||
 | 
					    for (auto precision : env_.GetSupportedPrecisions()) {
 | 
				
			||||||
 | 
					      const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
 | 
				
			||||||
 | 
					      OperationDef op_def;
 | 
				
			||||||
 | 
					      op_def.precision = precision;
 | 
				
			||||||
 | 
					      auto data_type = DeduceDataTypeFromPrecision(precision);
 | 
				
			||||||
 | 
					      op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
 | 
				
			||||||
 | 
					      op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
 | 
				
			||||||
 | 
					      TensorFloat32 dst_tensor;
 | 
				
			||||||
 | 
					      Softmax1x1 operation = CreateSoftmax1x1(op_def);
 | 
				
			||||||
 | 
					      ASSERT_OK(ExecuteGPUOperation(
 | 
				
			||||||
 | 
					          src_tensor, creation_context_,
 | 
				
			||||||
 | 
					          absl::make_unique<Softmax1x1>(std::move(operation)), BHWC(1, 1, 1, 4),
 | 
				
			||||||
 | 
					          &dst_tensor));
 | 
				
			||||||
 | 
					      EXPECT_THAT(
 | 
				
			||||||
 | 
					          dst_tensor.data,
 | 
				
			||||||
 | 
					          Pointwise(FloatNear(eps),
 | 
				
			||||||
 | 
					                    {std::exp(doubles[0]) / s0, std::exp(doubles[1]) / s0,
 | 
				
			||||||
 | 
					                     std::exp(doubles[2]) / s0, std::exp(doubles[3]) / s0}));
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}  // namespace
 | 
					}  // namespace
 | 
				
			||||||
}  // namespace cl
 | 
					}  // namespace cl
 | 
				
			||||||
}  // namespace gpu
 | 
					}  // namespace gpu
 | 
				
			||||||
 | 
				
			|||||||
@ -60,6 +60,44 @@ TEST_F(OpenCLOperationTest, Softmax) {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					TEST_F(OpenCLOperationTest, SoftmaxBigNumber) {
 | 
				
			||||||
 | 
					  TensorFloat32 src_tensor;
 | 
				
			||||||
 | 
					  src_tensor.shape = BHWC(1, 2, 1, 2);
 | 
				
			||||||
 | 
					  double doubles[4] = {1.0, 2.0, 3.0, 100.0};
 | 
				
			||||||
 | 
					  // exp(100) is inf in float (32 bit) but representable in double (64 bit)
 | 
				
			||||||
 | 
					  src_tensor.data.resize(4);
 | 
				
			||||||
 | 
					  src_tensor.data[0] = doubles[0];
 | 
				
			||||||
 | 
					  src_tensor.data[1] = doubles[1];
 | 
				
			||||||
 | 
					  src_tensor.data[2] = doubles[2];
 | 
				
			||||||
 | 
					  src_tensor.data[3] = doubles[3];
 | 
				
			||||||
 | 
					  EXPECT_TRUE(std::isinf(std::exp(src_tensor.data[3])));
 | 
				
			||||||
 | 
					  EXPECT_FALSE(std::isinf(std::exp(doubles[3])));
 | 
				
			||||||
 | 
					  double s0 = std::exp(doubles[0]) + std::exp(doubles[1]);
 | 
				
			||||||
 | 
					  double s1 = std::exp(doubles[2]) + std::exp(doubles[3]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (auto storage : env_.GetSupportedStorages()) {
 | 
				
			||||||
 | 
					    for (auto precision : env_.GetSupportedPrecisions()) {
 | 
				
			||||||
 | 
					      const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
 | 
				
			||||||
 | 
					      OperationDef op_def;
 | 
				
			||||||
 | 
					      op_def.precision = precision;
 | 
				
			||||||
 | 
					      auto data_type = DeduceDataTypeFromPrecision(precision);
 | 
				
			||||||
 | 
					      op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
 | 
				
			||||||
 | 
					      op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
 | 
				
			||||||
 | 
					      TensorFloat32 dst_tensor;
 | 
				
			||||||
 | 
					      GPUOperation operation = CreateSoftmax(op_def);
 | 
				
			||||||
 | 
					      ASSERT_OK(ExecuteGPUOperation(
 | 
				
			||||||
 | 
					          src_tensor, creation_context_,
 | 
				
			||||||
 | 
					          absl::make_unique<GPUOperation>(std::move(operation)),
 | 
				
			||||||
 | 
					          BHWC(1, 2, 1, 2), &dst_tensor));
 | 
				
			||||||
 | 
					      EXPECT_THAT(
 | 
				
			||||||
 | 
					          dst_tensor.data,
 | 
				
			||||||
 | 
					          Pointwise(FloatNear(eps),
 | 
				
			||||||
 | 
					                    {std::exp(doubles[0]) / s0, std::exp(doubles[1]) / s0,
 | 
				
			||||||
 | 
					                     std::exp(doubles[2]) / s1, std::exp(doubles[3]) / s1}));
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}  // namespace
 | 
					}  // namespace
 | 
				
			||||||
}  // namespace cl
 | 
					}  // namespace cl
 | 
				
			||||||
}  // namespace gpu
 | 
					}  // namespace gpu
 | 
				
			||||||
 | 
				
			|||||||
@ -33,15 +33,28 @@ std::string GetSoftmaxKernelCode(const OperationDef& op_def) {
 | 
				
			|||||||
  c += "  if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height()) "
 | 
					  c += "  if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height()) "
 | 
				
			||||||
       "return; \n";
 | 
					       "return; \n";
 | 
				
			||||||
  c += "  float sum = 0.0f;\n";
 | 
					  c += "  float sum = 0.0f;\n";
 | 
				
			||||||
 | 
					  c += "  float maximum = args.src_tensor.Read<float>(X, Y, 0).x;\n";
 | 
				
			||||||
  c += "  for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
 | 
					  c += "  for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
 | 
				
			||||||
  c += "    float4 t = args.src_tensor.Read<float>(X, Y, d);\n";
 | 
					  c += "    float4 t = args.src_tensor.Read<float>(X, Y, d);\n";
 | 
				
			||||||
 | 
					  c += "    maximum = max(maximum, t.x);\n";
 | 
				
			||||||
 | 
					  c += "    if (d * 4 + 1 < args.dst_tensor.Channels()) maximum = max(maximum, "
 | 
				
			||||||
 | 
					       "t.y);\n";
 | 
				
			||||||
 | 
					  c += "    if (d * 4 + 2 < args.dst_tensor.Channels()) maximum = max(maximum, "
 | 
				
			||||||
 | 
					       "t.z);\n";
 | 
				
			||||||
 | 
					  c += "    if (d * 4 + 3 < args.dst_tensor.Channels()) maximum = max(maximum, "
 | 
				
			||||||
 | 
					       "t.w);\n";
 | 
				
			||||||
 | 
					  c += "  }\n";
 | 
				
			||||||
 | 
					  c += "  for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
 | 
				
			||||||
 | 
					  c += "    float4 t = args.src_tensor.Read<float>(X, Y, d) - "
 | 
				
			||||||
 | 
					       "(float4)(maximum);\n";
 | 
				
			||||||
  c += "    sum += exp(t.x);\n";
 | 
					  c += "    sum += exp(t.x);\n";
 | 
				
			||||||
  c += "    if (d * 4 + 1 < args.dst_tensor.Channels()) sum += exp(t.y);\n";
 | 
					  c += "    if (d * 4 + 1 < args.dst_tensor.Channels()) sum += exp(t.y);\n";
 | 
				
			||||||
  c += "    if (d * 4 + 2 < args.dst_tensor.Channels()) sum += exp(t.z);\n";
 | 
					  c += "    if (d * 4 + 2 < args.dst_tensor.Channels()) sum += exp(t.z);\n";
 | 
				
			||||||
  c += "    if (d * 4 + 3 < args.dst_tensor.Channels()) sum += exp(t.w);\n";
 | 
					  c += "    if (d * 4 + 3 < args.dst_tensor.Channels()) sum += exp(t.w);\n";
 | 
				
			||||||
  c += "  }\n";
 | 
					  c += "  }\n";
 | 
				
			||||||
  c += "  for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
 | 
					  c += "  for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
 | 
				
			||||||
  c += "    float4 t = args.src_tensor.Read<float>(X, Y, d);\n";
 | 
					  c += "    float4 t = args.src_tensor.Read<float>(X, Y, d) - "
 | 
				
			||||||
 | 
					       "(float4)(maximum);\n";
 | 
				
			||||||
  c += "    t = exp(t) / sum;\n";
 | 
					  c += "    t = exp(t) / sum;\n";
 | 
				
			||||||
  c += "    FLT4 result = TO_FLT4(t);\n";
 | 
					  c += "    FLT4 result = TO_FLT4(t);\n";
 | 
				
			||||||
  c += "    args.dst_tensor.Write(result, X, Y, d);\n";
 | 
					  c += "    args.dst_tensor.Write(result, X, Y, d);\n";
 | 
				
			||||||
 | 
				
			|||||||
@ -45,7 +45,6 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
 | 
				
			|||||||
  args_.AddFloat("mask_y");
 | 
					  args_.AddFloat("mask_y");
 | 
				
			||||||
  args_.AddFloat("mask_z");
 | 
					  args_.AddFloat("mask_z");
 | 
				
			||||||
  args_.AddFloat("mask_w");
 | 
					  args_.AddFloat("mask_w");
 | 
				
			||||||
  args_.AddInt("slices_x32");
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::string c;
 | 
					  std::string c;
 | 
				
			||||||
  c += "__kernel void main_function(\n";
 | 
					  c += "__kernel void main_function(\n";
 | 
				
			||||||
@ -58,24 +57,47 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  c += "  float4 mask = (float4)(args.mask_x, args.mask_y, args.mask_z, "
 | 
					  c += "  float4 mask = (float4)(args.mask_x, args.mask_y, args.mask_z, "
 | 
				
			||||||
       "args.mask_w);\n";
 | 
					       "args.mask_w);\n";
 | 
				
			||||||
  c += "  int offset = 0;\n";
 | 
					  c += "  float4 maxx4 = (float4)(args.src_tensor.Read<float>(0, 0, 0).x);\n";
 | 
				
			||||||
  c += "  float sum = 0.0f;\n";
 | 
					 | 
				
			||||||
  c += "  int s = 0;\n";
 | 
					 | 
				
			||||||
  c += "  int tid = get_local_id(0);\n";
 | 
					  c += "  int tid = get_local_id(0);\n";
 | 
				
			||||||
  c += "  do {\n";
 | 
					  c += "  for (int s = tid; s < args.src_tensor.Slices(); s += 32) {\n";
 | 
				
			||||||
  c += "    int z = offset + tid;\n";
 | 
					  c += "    float4 mask_a = s == args.src_tensor.Slices() - 1 ? mask : "
 | 
				
			||||||
  c += "    if (z < args.dst_tensor.Slices()) {\n";
 | 
					 | 
				
			||||||
  c += "      float4 mask_temp = z == args.dst_tensor.Slices() - 1 ? mask : "
 | 
					 | 
				
			||||||
       "(float4)(1.0f);\n";
 | 
					       "(float4)(1.0f);\n";
 | 
				
			||||||
  c += "      float4 src = args.src_tensor.Read<float>(0, 0, z);\n";
 | 
					  c += "    float4 mask_b = (float4)(1.0f) - mask_a;\n";
 | 
				
			||||||
  c += "      sum += dot(mask_temp, exp(src));\n";
 | 
					  c += "    float4 src = args.src_tensor.Read<float>(0, 0, s);\n";
 | 
				
			||||||
  c += "      offset += 32;\n";
 | 
					  c += "    src = src * mask_a + mask_b * src.x;\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, src);\n";
 | 
				
			||||||
  c += "  }\n";
 | 
					  c += "  }\n";
 | 
				
			||||||
  c += "    s++;\n";
 | 
					  c += "  float maximum = max(maxx4.x, maxx4.y);\n";
 | 
				
			||||||
  c += "  } while (s < args.slices_x32);\n";
 | 
					  c += "  maximum = max(maximum, maxx4.z);\n";
 | 
				
			||||||
  c += "\n";
 | 
					  c += "  maximum = max(maximum, maxx4.w);\n";
 | 
				
			||||||
  c += "  __local float4 tmp[8];\n";
 | 
					  c += "  __local float4 tmp[8];\n";
 | 
				
			||||||
  c += "  __local float* tmpx1 = (__local float*)tmp;\n";
 | 
					  c += "  __local float* tmpx1 = (__local float*)tmp;\n";
 | 
				
			||||||
 | 
					  c += "  tmpx1[tid] = maximum;\n";
 | 
				
			||||||
 | 
					  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
				
			||||||
 | 
					  c += "  if (tid == 0) {\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(tmp[0], tmp[1]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[2]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[3]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[4]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[5]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[6]);\n";
 | 
				
			||||||
 | 
					  c += "    maxx4 = max(maxx4, tmp[7]);\n";
 | 
				
			||||||
 | 
					  c += "    maximum = max(maxx4.x, maxx4.y);\n";
 | 
				
			||||||
 | 
					  c += "    maximum = max(maximum, maxx4.z);\n";
 | 
				
			||||||
 | 
					  c += "    maximum = max(maximum, maxx4.w);\n";
 | 
				
			||||||
 | 
					  c += "    tmpx1[0] = maximum;\n";
 | 
				
			||||||
 | 
					  c += "  }\n";
 | 
				
			||||||
 | 
					  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
				
			||||||
 | 
					  c += "  maximum = tmpx1[0];\n";
 | 
				
			||||||
 | 
					  c += "  float sum = 0.0f;\n";
 | 
				
			||||||
 | 
					  c += "  for (int s = tid; s < args.src_tensor.Slices(); s += 32) {\n";
 | 
				
			||||||
 | 
					  c += "    float4 mask_temp = s == args.src_tensor.Slices() - 1 ? mask : "
 | 
				
			||||||
 | 
					       "(float4)(1.0f);\n";
 | 
				
			||||||
 | 
					  c += "    float4 src = args.src_tensor.Read<float>(0, 0, s) - "
 | 
				
			||||||
 | 
					       "(float4)(maximum);\n";
 | 
				
			||||||
 | 
					  c += "    sum += dot(mask_temp, exp(src));\n";
 | 
				
			||||||
 | 
					  c += "  }\n";
 | 
				
			||||||
 | 
					  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
				
			||||||
  c += "  tmpx1[tid] = sum;\n";
 | 
					  c += "  tmpx1[tid] = sum;\n";
 | 
				
			||||||
  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
					  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
				
			||||||
  c += "  if (tid == 0) {\n";
 | 
					  c += "  if (tid == 0) {\n";
 | 
				
			||||||
@ -92,18 +114,13 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
 | 
				
			|||||||
  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
					  c += "  barrier(CLK_LOCAL_MEM_FENCE);\n";
 | 
				
			||||||
  c += "  sum = tmpx1[0];\n";
 | 
					  c += "  sum = tmpx1[0];\n";
 | 
				
			||||||
  c += "\n";
 | 
					  c += "\n";
 | 
				
			||||||
  c += "  offset = 0;\n";
 | 
					  c += "  int dst_s = get_global_id(0);\n";
 | 
				
			||||||
  c += "  s = 0;\n";
 | 
					  c += "  if (dst_s < args.dst_tensor.Slices()) {\n";
 | 
				
			||||||
  c += "  do {\n";
 | 
					  c += "    float4 src = args.src_tensor.Read<float>(0, 0, dst_s) - "
 | 
				
			||||||
  c += "    int z = offset + tid;\n";
 | 
					       "(float4)(maximum);\n";
 | 
				
			||||||
  c += "    if (z < args.dst_tensor.Slices()) {\n";
 | 
					  c += "    FLT4 res = TO_FLT4(exp(src) * sum);\n";
 | 
				
			||||||
  c += "      FLT4 res = TO_FLT4(exp(args.src_tensor.Read<float>(0, 0, "
 | 
					  c += "    args.dst_tensor.Write(res, 0, 0, dst_s);\n";
 | 
				
			||||||
       "z))*sum);\n";
 | 
					 | 
				
			||||||
  c += "      args.dst_tensor.Write(res, 0, 0, z);\n";
 | 
					 | 
				
			||||||
  c += "      offset += 32;\n";
 | 
					 | 
				
			||||||
  c += "  }\n";
 | 
					  c += "  }\n";
 | 
				
			||||||
  c += "    s++;\n";
 | 
					 | 
				
			||||||
  c += "  } while (s < args.slices_x32);\n";
 | 
					 | 
				
			||||||
  c += "}\n";
 | 
					  c += "}\n";
 | 
				
			||||||
  return c;
 | 
					  return c;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@ -114,12 +131,12 @@ absl::Status Softmax1x1::BindArguments(ArgumentsBinder* args) {
 | 
				
			|||||||
  RETURN_IF_ERROR(args->SetFloat("mask_y", mask.y));
 | 
					  RETURN_IF_ERROR(args->SetFloat("mask_y", mask.y));
 | 
				
			||||||
  RETURN_IF_ERROR(args->SetFloat("mask_z", mask.z));
 | 
					  RETURN_IF_ERROR(args->SetFloat("mask_z", mask.z));
 | 
				
			||||||
  RETURN_IF_ERROR(args->SetFloat("mask_w", mask.w));
 | 
					  RETURN_IF_ERROR(args->SetFloat("mask_w", mask.w));
 | 
				
			||||||
  RETURN_IF_ERROR(
 | 
					 | 
				
			||||||
      args->SetInt("slices_x32", DivideRoundUp(src_[0]->Slices(), 32)));
 | 
					 | 
				
			||||||
  return absl::OkStatus();
 | 
					  return absl::OkStatus();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
int3 Softmax1x1::GetGridSize() const { return int3(32, dst_[0]->Batch(), 1); }
 | 
					int3 Softmax1x1::GetGridSize() const {
 | 
				
			||||||
 | 
					  return int3(dst_[0]->Slices(), dst_[0]->Batch(), 1);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Softmax1x1 CreateSoftmax1x1(const OperationDef& definition) {
 | 
					Softmax1x1 CreateSoftmax1x1(const OperationDef& definition) {
 | 
				
			||||||
  return Softmax1x1(definition);
 | 
					  return Softmax1x1(definition);
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user