Making Softmax in OpenCL in 3 passes.
Improves numerical stability. PiperOrigin-RevId: 347941516 Change-Id: Ibe344c9922e1e267501f42ce1123ec943ee3eb97
This commit is contained in:
parent
9a03eedc45
commit
115623e2fc
tensorflow/lite/delegates/gpu
@ -59,6 +59,44 @@ TEST_F(OpenCLOperationTest, Softmax1x1) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(OpenCLOperationTest, Softmax1x1BigNumber) {
|
||||
TensorFloat32 src_tensor;
|
||||
src_tensor.shape = BHWC(1, 1, 1, 4);
|
||||
double doubles[4] = {1.0, 2.0, 3.0, 100.0};
|
||||
// exp(100) is inf in float (32 bit) but representable in double (64 bit)
|
||||
src_tensor.data.resize(4);
|
||||
src_tensor.data[0] = doubles[0];
|
||||
src_tensor.data[1] = doubles[1];
|
||||
src_tensor.data[2] = doubles[2];
|
||||
src_tensor.data[3] = doubles[3];
|
||||
EXPECT_TRUE(std::isinf(std::exp(src_tensor.data[3])));
|
||||
EXPECT_FALSE(std::isinf(std::exp(doubles[3])));
|
||||
double s0 = std::exp(doubles[0]) + std::exp(doubles[1]) +
|
||||
std::exp(doubles[2]) + std::exp(doubles[3]);
|
||||
|
||||
for (auto storage : env_.GetSupportedStorages()) {
|
||||
for (auto precision : env_.GetSupportedPrecisions()) {
|
||||
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
|
||||
OperationDef op_def;
|
||||
op_def.precision = precision;
|
||||
auto data_type = DeduceDataTypeFromPrecision(precision);
|
||||
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
|
||||
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
|
||||
TensorFloat32 dst_tensor;
|
||||
Softmax1x1 operation = CreateSoftmax1x1(op_def);
|
||||
ASSERT_OK(ExecuteGPUOperation(
|
||||
src_tensor, creation_context_,
|
||||
absl::make_unique<Softmax1x1>(std::move(operation)), BHWC(1, 1, 1, 4),
|
||||
&dst_tensor));
|
||||
EXPECT_THAT(
|
||||
dst_tensor.data,
|
||||
Pointwise(FloatNear(eps),
|
||||
{std::exp(doubles[0]) / s0, std::exp(doubles[1]) / s0,
|
||||
std::exp(doubles[2]) / s0, std::exp(doubles[3]) / s0}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace cl
|
||||
} // namespace gpu
|
||||
|
@ -60,6 +60,44 @@ TEST_F(OpenCLOperationTest, Softmax) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(OpenCLOperationTest, SoftmaxBigNumber) {
|
||||
TensorFloat32 src_tensor;
|
||||
src_tensor.shape = BHWC(1, 2, 1, 2);
|
||||
double doubles[4] = {1.0, 2.0, 3.0, 100.0};
|
||||
// exp(100) is inf in float (32 bit) but representable in double (64 bit)
|
||||
src_tensor.data.resize(4);
|
||||
src_tensor.data[0] = doubles[0];
|
||||
src_tensor.data[1] = doubles[1];
|
||||
src_tensor.data[2] = doubles[2];
|
||||
src_tensor.data[3] = doubles[3];
|
||||
EXPECT_TRUE(std::isinf(std::exp(src_tensor.data[3])));
|
||||
EXPECT_FALSE(std::isinf(std::exp(doubles[3])));
|
||||
double s0 = std::exp(doubles[0]) + std::exp(doubles[1]);
|
||||
double s1 = std::exp(doubles[2]) + std::exp(doubles[3]);
|
||||
|
||||
for (auto storage : env_.GetSupportedStorages()) {
|
||||
for (auto precision : env_.GetSupportedPrecisions()) {
|
||||
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
|
||||
OperationDef op_def;
|
||||
op_def.precision = precision;
|
||||
auto data_type = DeduceDataTypeFromPrecision(precision);
|
||||
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
|
||||
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
|
||||
TensorFloat32 dst_tensor;
|
||||
GPUOperation operation = CreateSoftmax(op_def);
|
||||
ASSERT_OK(ExecuteGPUOperation(
|
||||
src_tensor, creation_context_,
|
||||
absl::make_unique<GPUOperation>(std::move(operation)),
|
||||
BHWC(1, 2, 1, 2), &dst_tensor));
|
||||
EXPECT_THAT(
|
||||
dst_tensor.data,
|
||||
Pointwise(FloatNear(eps),
|
||||
{std::exp(doubles[0]) / s0, std::exp(doubles[1]) / s0,
|
||||
std::exp(doubles[2]) / s1, std::exp(doubles[3]) / s1}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace cl
|
||||
} // namespace gpu
|
||||
|
@ -33,15 +33,28 @@ std::string GetSoftmaxKernelCode(const OperationDef& op_def) {
|
||||
c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height()) "
|
||||
"return; \n";
|
||||
c += " float sum = 0.0f;\n";
|
||||
c += " float maximum = args.src_tensor.Read<float>(X, Y, 0).x;\n";
|
||||
c += " for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
|
||||
c += " float4 t = args.src_tensor.Read<float>(X, Y, d);\n";
|
||||
c += " maximum = max(maximum, t.x);\n";
|
||||
c += " if (d * 4 + 1 < args.dst_tensor.Channels()) maximum = max(maximum, "
|
||||
"t.y);\n";
|
||||
c += " if (d * 4 + 2 < args.dst_tensor.Channels()) maximum = max(maximum, "
|
||||
"t.z);\n";
|
||||
c += " if (d * 4 + 3 < args.dst_tensor.Channels()) maximum = max(maximum, "
|
||||
"t.w);\n";
|
||||
c += " }\n";
|
||||
c += " for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
|
||||
c += " float4 t = args.src_tensor.Read<float>(X, Y, d) - "
|
||||
"(float4)(maximum);\n";
|
||||
c += " sum += exp(t.x);\n";
|
||||
c += " if (d * 4 + 1 < args.dst_tensor.Channels()) sum += exp(t.y);\n";
|
||||
c += " if (d * 4 + 2 < args.dst_tensor.Channels()) sum += exp(t.z);\n";
|
||||
c += " if (d * 4 + 3 < args.dst_tensor.Channels()) sum += exp(t.w);\n";
|
||||
c += " }\n";
|
||||
c += " for (int d = 0; d < args.dst_tensor.Slices(); ++d) {\n";
|
||||
c += " float4 t = args.src_tensor.Read<float>(X, Y, d);\n";
|
||||
c += " float4 t = args.src_tensor.Read<float>(X, Y, d) - "
|
||||
"(float4)(maximum);\n";
|
||||
c += " t = exp(t) / sum;\n";
|
||||
c += " FLT4 result = TO_FLT4(t);\n";
|
||||
c += " args.dst_tensor.Write(result, X, Y, d);\n";
|
||||
|
@ -45,7 +45,6 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
|
||||
args_.AddFloat("mask_y");
|
||||
args_.AddFloat("mask_z");
|
||||
args_.AddFloat("mask_w");
|
||||
args_.AddInt("slices_x32");
|
||||
|
||||
std::string c;
|
||||
c += "__kernel void main_function(\n";
|
||||
@ -58,24 +57,47 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
|
||||
}
|
||||
c += " float4 mask = (float4)(args.mask_x, args.mask_y, args.mask_z, "
|
||||
"args.mask_w);\n";
|
||||
c += " int offset = 0;\n";
|
||||
c += " float sum = 0.0f;\n";
|
||||
c += " int s = 0;\n";
|
||||
c += " float4 maxx4 = (float4)(args.src_tensor.Read<float>(0, 0, 0).x);\n";
|
||||
c += " int tid = get_local_id(0);\n";
|
||||
c += " do {\n";
|
||||
c += " int z = offset + tid;\n";
|
||||
c += " if (z < args.dst_tensor.Slices()) {\n";
|
||||
c += " float4 mask_temp = z == args.dst_tensor.Slices() - 1 ? mask : "
|
||||
c += " for (int s = tid; s < args.src_tensor.Slices(); s += 32) {\n";
|
||||
c += " float4 mask_a = s == args.src_tensor.Slices() - 1 ? mask : "
|
||||
"(float4)(1.0f);\n";
|
||||
c += " float4 src = args.src_tensor.Read<float>(0, 0, z);\n";
|
||||
c += " sum += dot(mask_temp, exp(src));\n";
|
||||
c += " offset += 32;\n";
|
||||
c += " }\n";
|
||||
c += " s++;\n";
|
||||
c += " } while (s < args.slices_x32);\n";
|
||||
c += "\n";
|
||||
c += " float4 mask_b = (float4)(1.0f) - mask_a;\n";
|
||||
c += " float4 src = args.src_tensor.Read<float>(0, 0, s);\n";
|
||||
c += " src = src * mask_a + mask_b * src.x;\n";
|
||||
c += " maxx4 = max(maxx4, src);\n";
|
||||
c += " }\n";
|
||||
c += " float maximum = max(maxx4.x, maxx4.y);\n";
|
||||
c += " maximum = max(maximum, maxx4.z);\n";
|
||||
c += " maximum = max(maximum, maxx4.w);\n";
|
||||
c += " __local float4 tmp[8];\n";
|
||||
c += " __local float* tmpx1 = (__local float*)tmp;\n";
|
||||
c += " tmpx1[tid] = maximum;\n";
|
||||
c += " barrier(CLK_LOCAL_MEM_FENCE);\n";
|
||||
c += " if (tid == 0) {\n";
|
||||
c += " maxx4 = max(tmp[0], tmp[1]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[2]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[3]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[4]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[5]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[6]);\n";
|
||||
c += " maxx4 = max(maxx4, tmp[7]);\n";
|
||||
c += " maximum = max(maxx4.x, maxx4.y);\n";
|
||||
c += " maximum = max(maximum, maxx4.z);\n";
|
||||
c += " maximum = max(maximum, maxx4.w);\n";
|
||||
c += " tmpx1[0] = maximum;\n";
|
||||
c += " }\n";
|
||||
c += " barrier(CLK_LOCAL_MEM_FENCE);\n";
|
||||
c += " maximum = tmpx1[0];\n";
|
||||
c += " float sum = 0.0f;\n";
|
||||
c += " for (int s = tid; s < args.src_tensor.Slices(); s += 32) {\n";
|
||||
c += " float4 mask_temp = s == args.src_tensor.Slices() - 1 ? mask : "
|
||||
"(float4)(1.0f);\n";
|
||||
c += " float4 src = args.src_tensor.Read<float>(0, 0, s) - "
|
||||
"(float4)(maximum);\n";
|
||||
c += " sum += dot(mask_temp, exp(src));\n";
|
||||
c += " }\n";
|
||||
c += " barrier(CLK_LOCAL_MEM_FENCE);\n";
|
||||
c += " tmpx1[tid] = sum;\n";
|
||||
c += " barrier(CLK_LOCAL_MEM_FENCE);\n";
|
||||
c += " if (tid == 0) {\n";
|
||||
@ -92,18 +114,13 @@ std::string Softmax1x1::GetSoftmaxKernelCode(const OperationDef& op_def) {
|
||||
c += " barrier(CLK_LOCAL_MEM_FENCE);\n";
|
||||
c += " sum = tmpx1[0];\n";
|
||||
c += "\n";
|
||||
c += " offset = 0;\n";
|
||||
c += " s = 0;\n";
|
||||
c += " do {\n";
|
||||
c += " int z = offset + tid;\n";
|
||||
c += " if (z < args.dst_tensor.Slices()) {\n";
|
||||
c += " FLT4 res = TO_FLT4(exp(args.src_tensor.Read<float>(0, 0, "
|
||||
"z))*sum);\n";
|
||||
c += " args.dst_tensor.Write(res, 0, 0, z);\n";
|
||||
c += " offset += 32;\n";
|
||||
c += " }\n";
|
||||
c += " s++;\n";
|
||||
c += " } while (s < args.slices_x32);\n";
|
||||
c += " int dst_s = get_global_id(0);\n";
|
||||
c += " if (dst_s < args.dst_tensor.Slices()) {\n";
|
||||
c += " float4 src = args.src_tensor.Read<float>(0, 0, dst_s) - "
|
||||
"(float4)(maximum);\n";
|
||||
c += " FLT4 res = TO_FLT4(exp(src) * sum);\n";
|
||||
c += " args.dst_tensor.Write(res, 0, 0, dst_s);\n";
|
||||
c += " }\n";
|
||||
c += "}\n";
|
||||
return c;
|
||||
}
|
||||
@ -114,12 +131,12 @@ absl::Status Softmax1x1::BindArguments(ArgumentsBinder* args) {
|
||||
RETURN_IF_ERROR(args->SetFloat("mask_y", mask.y));
|
||||
RETURN_IF_ERROR(args->SetFloat("mask_z", mask.z));
|
||||
RETURN_IF_ERROR(args->SetFloat("mask_w", mask.w));
|
||||
RETURN_IF_ERROR(
|
||||
args->SetInt("slices_x32", DivideRoundUp(src_[0]->Slices(), 32)));
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
int3 Softmax1x1::GetGridSize() const { return int3(32, dst_[0]->Batch(), 1); }
|
||||
int3 Softmax1x1::GetGridSize() const {
|
||||
return int3(dst_[0]->Slices(), dst_[0]->Batch(), 1);
|
||||
}
|
||||
|
||||
Softmax1x1 CreateSoftmax1x1(const OperationDef& definition) {
|
||||
return Softmax1x1(definition);
|
||||
|
Loading…
Reference in New Issue
Block a user