Making the Eager iterator use the new copy_to_device.

This CL gets rid of the forced placement of all eager datasets / iterators on the CPU since now we can have some datasets on the GPU.

PiperOrigin-RevId: 205264791
This commit is contained in:
Rohan Jain 2018-07-19 10:44:24 -07:00 committed by TensorFlower Gardener
parent 9dfa333cc8
commit 1044888430
3 changed files with 26 additions and 69 deletions

View File

@ -480,6 +480,11 @@ class _CopyToDeviceDataset(dataset_ops.Dataset):
self._finalize_func = _remote_finalize_func
self._finalize_captured_args = _remote_finalize_func.captured_inputs
g = ops.get_default_graph()
_remote_init_func.add_to_graph(g)
_remote_next_func.add_to_graph(g)
_remote_finalize_func.add_to_graph(g)
# pylint: enable=protected-scope
# The one_shot_iterator implementation needs a 0 arg _make_dataset function

View File

@ -18,33 +18,14 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import threading
from tensorflow.contrib.data.python.ops import prefetching_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import sparse
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.training.checkpointable import base as checkpointable
from tensorflow.python.training.saver import BaseSaverBuilder
_uid_counter = 0
_uid_lock = threading.Lock()
def _generate_shared_name(prefix):
with _uid_lock:
global _uid_counter
uid = _uid_counter
_uid_counter += 1
return "{}{}".format(prefix, uid)
class Iterator(iterator_ops.EagerIterator, checkpointable.CheckpointableBase):
"""An iterator producing tf.Tensor objects from a tf.data.Dataset.
@ -80,38 +61,18 @@ class Iterator(iterator_ops.EagerIterator, checkpointable.CheckpointableBase):
"`tf.contrib.eager.Iterator`. Use `for ... in dataset:` to iterate "
"over the dataset instead.")
super(Iterator, self).__init__(dataset)
if not context.context().device_spec.device_type:
is_remote_device = False
else:
is_remote_device = context.context().device_spec.device_type != "CPU"
self._buffer_resource_handle = None
if is_remote_device:
with ops.device("/device:CPU:0"):
iter_string_handle = gen_dataset_ops.iterator_to_string_handle(
self._resource)
@function.Defun(dtypes.string)
def remote_fn(h):
remote_iterator = iterator_ops.Iterator.from_string_handle(
h, self.output_types, self.output_shapes, self.output_classes)
return remote_iterator.get_next()
remote_fn.add_to_graph(None)
target = constant_op.constant("/device:CPU:0")
with ops.device(self._device):
self._buffer_resource_handle = prefetching_ops.function_buffering_resource( # pylint: disable=line-too-long
string_arg=iter_string_handle,
output_types=self._flat_output_types,
f=remote_fn,
target_device=target,
buffer_size=10,
container="",
shared_name=_generate_shared_name(
"contrib_eager_iterator_function_buffer_resource"))
self._buffer_resource_deleter = resource_variable_ops.EagerResourceDeleter( # pylint: disable=line-too-long
handle=self._buffer_resource_handle,
handle_device=self._device)
with ops.device(None):
# Let the placer figure out where to place the various functions etc.
# created by the CopyToDeviceDataset.
dataset = dataset.apply(prefetching_ops.copy_to_device(
context.context().device_name))
dataset = dataset.prefetch(1)
super(Iterator, self).__init__(dataset)
def _next_internal(self):
"""Returns a nested structure of `tf.Tensor`s containing the next element.
@ -120,16 +81,7 @@ class Iterator(iterator_ops.EagerIterator, checkpointable.CheckpointableBase):
# that there is no more data to iterate over.
# TODO(b/77291417): Fix
with context.execution_mode(context.SYNC):
if self._buffer_resource_handle is not None:
with ops.device(self._device):
ret = prefetching_ops.function_buffering_resource_get_next(
function_buffer_resource=self._buffer_resource_handle,
output_types=self._flat_output_types)
return sparse.deserialize_sparse_tensors(
nest.pack_sequence_as(self._output_types, ret), self._output_types,
self._output_shapes, self._output_classes)
else:
return super(Iterator, self)._next_internal()
return super(Iterator, self)._next_internal()
# TODO(shivaniagrawal): Expose checkpointable stateful objects from dataset
# attributes(potential).

View File

@ -499,23 +499,23 @@ class EagerIterator(object):
"tf.data.Dataset.make_initializable_iterator or "
"tf.data.Dataset.make_one_shot_iterator for graph construction".
format(type(self)))
with ops.device("/device:CPU:0"):
ds_variant = dataset._as_variant_tensor() # pylint: disable=protected-access
self._output_classes = dataset.output_classes
self._output_types = dataset.output_types
self._output_shapes = dataset.output_shapes
self._flat_output_types = nest.flatten(
sparse.as_dense_types(self._output_types, self._output_classes))
self._flat_output_shapes = nest.flatten(
sparse.as_dense_shapes(self._output_shapes, self._output_classes))
self._device = context.context().device_name
ds_variant = dataset._as_variant_tensor() # pylint: disable=protected-access
self._output_classes = dataset.output_classes
self._output_types = dataset.output_types
self._output_shapes = dataset.output_shapes
self._flat_output_types = nest.flatten(
sparse.as_dense_types(self._output_types, self._output_classes))
self._flat_output_shapes = nest.flatten(
sparse.as_dense_shapes(self._output_shapes, self._output_classes))
with ops.colocate_with(ds_variant):
self._resource = gen_dataset_ops.anonymous_iterator(
output_types=self._flat_output_types,
output_shapes=self._flat_output_shapes)
gen_dataset_ops.make_iterator(ds_variant, self._resource)
# Delete the resource when this object is deleted
self._resource_deleter = resource_variable_ops.EagerResourceDeleter(
handle=self._resource, handle_device="/device:CPU:0")
self._device = context.context().device_name
# Delete the resource when this object is deleted
self._resource_deleter = resource_variable_ops.EagerResourceDeleter(
handle=self._resource, handle_device=self._device)
def __iter__(self):
return self