Merge pull request #27475 from feihugis:Test_ParallelInterleaveDatasetOp

PiperOrigin-RevId: 241814960
This commit is contained in:
TensorFlower Gardener 2019-04-03 15:21:09 -07:00
commit 100ceee8ee
4 changed files with 1066 additions and 1 deletions

View File

@ -386,6 +386,30 @@ tf_kernel_library(
], ],
) )
tf_cc_test(
name = "parallel_interleave_dataset_op_test",
size = "small",
srcs = ["parallel_interleave_dataset_op_test.cc"],
deps = [
":captured_function",
":dataset_test_base",
":dataset_utils",
":iterator_ops",
":parallel_interleave_dataset_op",
":tensor_slice_dataset_op",
"//tensorflow/core:core_cpu_internal",
"//tensorflow/core:dataset_ops_op_lib",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core:lib_internal",
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
"//tensorflow/core/kernels:function_ops",
"//tensorflow/core/kernels:identity_op",
],
)
cc_library( cc_library(
name = "prefetch_autotuner", name = "prefetch_autotuner",
srcs = ["prefetch_autotuner.cc"], srcs = ["prefetch_autotuner.cc"],

View File

@ -30,7 +30,78 @@ Status DatasetOpsTestBase::ExpectEqual(const Tensor& a, const Tensor& b) {
// TODO(feihugis): figure out how to support variant tensors. // TODO(feihugis): figure out how to support variant tensors.
#undef CASE #undef CASE
default: default:
return errors::Internal("Unsupported dtype", a.dtype()); return errors::Internal("Unsupported dtype: ", a.dtype());
}
return Status::OK();
}
template <typename T>
bool compare(Tensor t1, Tensor t2) {
auto flat_t1 = t1.flat<T>();
auto flat_t2 = t2.flat<T>();
auto length = std::min(flat_t1.size(), flat_t2.size());
for (int i = 0; i < length; ++i) {
if (flat_t1(i) < flat_t2(i)) return true;
if (flat_t1(i) > flat_t2(i)) return false;
}
return flat_t1.size() < length;
}
Status DatasetOpsTestBase::ExpectEqual(std::vector<Tensor> produced_tensors,
std::vector<Tensor> expected_tensors,
bool expect_items_equal) {
if (produced_tensors.size() != expected_tensors.size()) {
return Status(tensorflow::errors::Internal(
"The two tensor vectors have different size (", produced_tensors.size(),
" v.s. ", expected_tensors.size(), ")"));
}
if (produced_tensors.empty()) return Status::OK();
if (produced_tensors[0].dtype() != expected_tensors[0].dtype()) {
return Status(tensorflow::errors::Internal(
"The two tensor vectors have different dtypes (",
produced_tensors[0].dtype(), " v.s. ", expected_tensors[0].dtype(),
")"));
}
if (expect_items_equal) {
const DataType& dtype = produced_tensors[0].dtype();
switch (dtype) {
#define CASE(DT) \
case DT: \
std::sort(produced_tensors.begin(), produced_tensors.end(), \
compare<EnumToDataType<DT>::Type>); \
std::sort(expected_tensors.begin(), expected_tensors.end(), \
compare<EnumToDataType<DT>::Type>); \
break;
CASE(DT_FLOAT);
CASE(DT_DOUBLE);
CASE(DT_INT32);
CASE(DT_UINT8);
CASE(DT_INT16);
CASE(DT_INT8);
CASE(DT_STRING);
CASE(DT_INT64);
CASE(DT_BOOL);
CASE(DT_QINT8);
CASE(DT_QUINT8);
CASE(DT_QINT32);
CASE(DT_QINT16);
CASE(DT_QUINT16);
CASE(DT_UINT16);
CASE(DT_HALF);
CASE(DT_UINT32);
CASE(DT_UINT64);
// TODO(feihugis): support other dtypes.
#undef CASE
default:
return errors::Internal("Unsupported dtype: ", dtype);
}
}
for (int i = 0; i < produced_tensors.size(); ++i) {
TF_RETURN_IF_ERROR(DatasetOpsTestBase::ExpectEqual(produced_tensors[i],
expected_tensors[i]));
} }
return Status::OK(); return Status::OK();
} }

View File

@ -51,6 +51,13 @@ class DatasetOpsTestBase : public ::testing::Test {
// and value. // and value.
static Status ExpectEqual(const Tensor& a, const Tensor& b); static Status ExpectEqual(const Tensor& a, const Tensor& b);
// The method validates whether the two tensor vectors have the same tensors.
// If `expect_items_equal` is true, the method will only evaluate the two
// vectors have the same elements regardless of order.
static Status ExpectEqual(std::vector<Tensor> produced_tensors,
std::vector<Tensor> expected_tensors,
bool expect_items_equal);
// Creates a tensor with the specified dtype, shape, and value. // Creates a tensor with the specified dtype, shape, and value.
template <typename T> template <typename T>
static Tensor CreateTensor(TensorShape input_shape, static Tensor CreateTensor(TensorShape input_shape,

View File

@ -0,0 +1,963 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/kernels/data/dataset_test_base.h"
namespace tensorflow {
namespace data {
namespace {
constexpr char kNodeName[] = "parallel_interleave_dataset";
constexpr char kOpName[] = "ParallelInterleaveDatasetV2";
class ParallelInterleaveDatasetOpTest : public DatasetOpsTestBase {
protected:
// Creates `TensorSliceDataset` variant tensor from the input vector of
// tensors.
Status CreateTensorSliceDatasetTensor(
std::vector<Tensor> *const tensor_vector, Tensor *dataset_tensor) {
DatasetBase *tensor_slice_dataset;
TF_RETURN_IF_ERROR(CreateTensorSliceDataset(
"tensor_slice_node", tensor_vector, &tensor_slice_dataset));
TF_RETURN_IF_ERROR(
StoreDatasetInVariantTensor(tensor_slice_dataset, dataset_tensor));
return Status::OK();
}
// Creates a new `ParallelInterleaveDataset` op kernel
Status CreateParallelInterleaveDatasetKernel(
const FunctionDefHelper::AttrValueWrapper &func,
const DataTypeVector &output_types,
const std::vector<PartialTensorShape> &output_shapes, bool sloppy,
std::unique_ptr<OpKernel> *op_kernel) {
NodeDef node_def = test::function::NDef(
kNodeName, kOpName,
{"input_dataset", "cycle_length", "block_length", "num_parallel_calls"},
{{"f", func},
{"Targuments", {}},
{"output_types", output_types},
{"output_shapes", output_shapes},
{"sloppy", sloppy}});
TF_RETURN_IF_ERROR(CreateOpKernel(node_def, op_kernel));
return Status::OK();
}
// Creates a new `ParallelInterleaveDataset` op kernel context.
Status CreateInterleaveDatasetContext(
OpKernel *const op_kernel,
gtl::InlinedVector<TensorValue, 4> *const inputs,
std::unique_ptr<OpKernelContext> *context) {
TF_RETURN_IF_ERROR(CheckOpKernelInput(*op_kernel, *inputs));
TF_RETURN_IF_ERROR(CreateOpKernelContext(op_kernel, inputs, context));
return Status::OK();
}
};
struct TestCase {
std::vector<Tensor> input_tensors;
FunctionDefHelper::AttrValueWrapper func;
std::vector<FunctionDef> func_lib;
Tensor cycle_length;
Tensor block_length;
Tensor num_parallel_calls;
bool sloppy;
std::vector<Tensor> expected_outputs;
DataTypeVector expected_output_dtypes;
std::vector<PartialTensorShape> expected_output_shapes;
int64 expected_cardinality;
std::vector<int> breakpoints;
};
template <typename T>
std::vector<Tensor> ConvertToTensorVec(std::vector<T> values) {
std::vector<Tensor> tensors;
tensors.reserve(values.size());
for (auto &value : values) {
tensors.emplace_back(
DatasetOpsTestBase::CreateTensor<T>(TensorShape({1}), {value}));
}
return tensors;
}
FunctionDefHelper::AttrValueWrapper MakeTensorSliceDatasetFunc(
const DataTypeVector &output_types,
const std::vector<PartialTensorShape> &output_shapes) {
return FunctionDefHelper::FunctionRef(
/*name*/ "MakeTensorSliceDataset",
/*attrs*/ {{"Toutput_types", output_types},
{"output_shapes", output_shapes}});
}
// test case 1: cycle_length = 1, block_length = 1, num_parallel_calls = 1,
// sloppy = false
TestCase TestCase1() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*sloppy*/ false,
/*expected_outputs*/
ConvertToTensorVec<int64>({0, 1, 2, 3, 4, 5, 6, 7, 8}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 2: cycle_length = 2, block_length = 1, num_parallel_calls = 2,
// sloppy = false
TestCase TestCase2() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ false,
/*expected_outputs*/
ConvertToTensorVec<int64>({0, 3, 1, 4, 2, 5, 6, 7, 8}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 3: cycle_length = 3, block_length = 1, num_parallel_calls = 2,
// sloppy = true
TestCase TestCase3() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<int64>({0, 3, 6, 1, 4, 7, 2, 5, 8}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 4: cycle_length = 5, block_length = 1, num_parallel_calls = 4,
// sloppy = true
TestCase TestCase4() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {5}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<int64>({0, 3, 6, 1, 4, 7, 2, 5, 8}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 5: cycle_length = 2, block_length = 2, num_parallel_calls = 1,
// sloppy = false
TestCase TestCase5() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*sloppy*/ false,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "d", "e", "c", "f", "g", "h", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 6: cycle_length = 2, block_length = 3, num_parallel_calls = 2,
// sloppy = true
TestCase TestCase6() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 7: cycle_length = 3, block_length = 2, num_parallel_calls = 2,
// sloppy = false
TestCase TestCase7() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ false,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "d", "e", "g", "h", "c", "f", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 8: cycle_length = 3, block_length = 3, num_parallel_calls = 3,
// sloppy = true
TestCase TestCase8() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 9: cycle_length = 4, block_length = 4, num_parallel_calls = 4,
// sloppy = true
TestCase TestCase9() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 10: cycle_length = 3, block_length = 3,
// num_parallel_calls = kAutoTune, sloppy = true
TestCase TestCase10() {
return {
/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<string>(
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_STRING}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}),
{model::kAutoTune}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
/*expected_output_dtypes*/ {DT_STRING},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {0, 4, 11}};
}
// test case 11: cycle_length = 0, block_length = 1, num_parallel_calls = 2,
// sloppy = true
TestCase InvalidCycleLengthTestCase() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {0}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<int64>({}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {}};
}
// test case 12: cycle_length = 1, block_length = -1, num_parallel_calls = 2,
// sloppy = true
TestCase InvalidBlockLengthTestCase() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<int64>({}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {}};
}
// test case 13: cycle_length = 1, block_length = 1, num_parallel_calls = -5,
// sloppy = true
TestCase InvalidNumParallelCallsTestCase() {
return {/*input_tensors*/
{DatasetOpsTestBase::CreateTensor<int64>(
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
/*func*/
MakeTensorSliceDatasetFunc(
DataTypeVector({DT_INT64}),
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
/*cycle_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*block_length*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
/*num_parallel_calls*/
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-5}),
/*sloppy*/ true,
/*expected_outputs*/
ConvertToTensorVec<int64>({}),
/*expected_output_dtypes*/ {DT_INT64},
/*expected_output_shapes*/ {PartialTensorShape({1})},
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
/*breakpoints*/ {}};
}
class ParameterizedParallelInterleaveDatasetOpTest
: public ParallelInterleaveDatasetOpTest,
public ::testing::WithParamInterface<TestCase> {};
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, GetNext) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<IteratorContext> iterator_ctx;
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
&iterator_ctx));
std::unique_ptr<IteratorBase> iterator;
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
iterator_ctx.get(), "Iterator", &iterator));
bool end_of_sequence = false;
std::vector<Tensor> out_tensors;
while (!end_of_sequence) {
std::vector<Tensor> next;
TF_EXPECT_OK(
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
out_tensors.insert(out_tensors.end(), next.begin(), next.end());
}
TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_outputs,
/*expect_items_equal*/ test_case.sloppy));
}
TEST_F(ParallelInterleaveDatasetOpTest, InvalidArguments) {
int thread_num = 2, cpu_num = 2;
TF_ASSERT_OK(InitThreadPool(thread_num));
std::vector<TestCase> test_cases({InvalidCycleLengthTestCase(),
InvalidBlockLengthTestCase(),
InvalidNumParallelCallsTestCase()});
for (const auto &test_case : test_cases) {
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset =
test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(
&inputs_for_tensor_slice_dataset, &tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
EXPECT_EQ(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset)
.code(),
tensorflow::error::INVALID_ARGUMENT);
}
}
TEST_F(ParallelInterleaveDatasetOpTest, DatasetNodeName) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = TestCase1();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
EXPECT_EQ(parallel_interleave_dataset->node_name(), kNodeName);
}
TEST_F(ParallelInterleaveDatasetOpTest, DatasetTypeString) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = TestCase1();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
EXPECT_EQ(parallel_interleave_dataset->type_string(), kOpName);
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetOutputDtypes) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
TF_EXPECT_OK(VerifyTypesMatch(parallel_interleave_dataset->output_dtypes(),
test_case.expected_output_dtypes));
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetOutputShapes) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
TF_EXPECT_OK(
VerifyShapesCompatible(parallel_interleave_dataset->output_shapes(),
test_case.expected_output_shapes));
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, Cardinality) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
EXPECT_EQ(parallel_interleave_dataset->Cardinality(),
test_case.expected_cardinality);
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetSave) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<SerializationContext> serialization_ctx;
TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx));
VariantTensorData data;
VariantTensorDataWriter writer(&data);
TF_ASSERT_OK(
parallel_interleave_dataset->Save(serialization_ctx.get(), &writer));
TF_ASSERT_OK(writer.Flush());
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, IteratorOutputDtypes) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<IteratorContext> iterator_ctx;
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
&iterator_ctx));
std::unique_ptr<IteratorBase> iterator;
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
iterator_ctx.get(), "Iterator", &iterator));
TF_EXPECT_OK(VerifyTypesMatch(iterator->output_dtypes(),
test_case.expected_output_dtypes));
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, IteratorOutputShapes) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<IteratorContext> iterator_ctx;
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
&iterator_ctx));
std::unique_ptr<IteratorBase> iterator;
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
iterator_ctx.get(), "Iterator", &iterator));
TF_EXPECT_OK(VerifyShapesCompatible(iterator->output_shapes(),
test_case.expected_output_shapes));
}
TEST_F(ParallelInterleaveDatasetOpTest, IteratorOutputPrefix) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = TestCase1();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<IteratorContext> iterator_ctx;
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
&iterator_ctx));
std::unique_ptr<IteratorBase> iterator;
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
iterator_ctx.get(), "Iterator", &iterator));
EXPECT_EQ(iterator->prefix(), "Iterator::ParallelInterleaveV2");
}
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, Roundtrip) {
int thread_num = 2, cpu_num = 2;
const TestCase &test_case = GetParam();
TF_ASSERT_OK(InitThreadPool(thread_num));
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
test_case.func, test_case.expected_output_dtypes,
test_case.expected_output_shapes, test_case.sloppy,
&parallel_interleave_dataset_kernel));
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
&tensor_slice_dataset_tensor));
Tensor cycle_length = test_case.cycle_length;
Tensor block_length = test_case.block_length;
Tensor num_parallel_calls = test_case.num_parallel_calls;
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
&cycle_length, &block_length,
&num_parallel_calls});
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
TF_ASSERT_OK(CreateInterleaveDatasetContext(
parallel_interleave_dataset_kernel.get(), &inputs,
&parallel_interleave_dataset_context));
DatasetBase *parallel_interleave_dataset;
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
parallel_interleave_dataset_context.get(),
&parallel_interleave_dataset));
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
std::unique_ptr<IteratorContext> iterator_ctx;
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
&iterator_ctx));
std::unique_ptr<IteratorBase> iterator;
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
iterator_ctx.get(), "Iterator", &iterator));
std::unique_ptr<SerializationContext> serialization_ctx;
TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx));
bool end_of_sequence = false;
std::vector<Tensor> out_tensors;
int cur_iteration = 0;
const std::vector<int> &breakpoints = test_case.breakpoints;
for (int breakpoint : breakpoints) {
VariantTensorData data;
VariantTensorDataWriter writer(&data);
TF_EXPECT_OK(iterator->Save(serialization_ctx.get(), &writer));
TF_EXPECT_OK(writer.Flush());
VariantTensorDataReader reader(&data);
TF_EXPECT_OK(iterator->Restore(iterator_ctx.get(), &reader));
while (cur_iteration <= breakpoint) {
std::vector<Tensor> next;
TF_EXPECT_OK(
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
out_tensors.insert(out_tensors.end(), next.begin(), next.end());
cur_iteration++;
}
}
TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_outputs,
/*expect_items_equal*/ test_case.sloppy));
}
INSTANTIATE_TEST_SUITE_P(
ParallelInterleaveDatasetOpTest,
ParameterizedParallelInterleaveDatasetOpTest,
::testing::ValuesIn(std::vector<TestCase>(
{TestCase1(), TestCase2(), TestCase3(), TestCase4(), TestCase5(),
TestCase6(), TestCase7(), TestCase8(), TestCase9(), TestCase10()})));
} // namespace
} // namespace data
} // namespace tensorflow