Merge pull request #27475 from feihugis:Test_ParallelInterleaveDatasetOp
PiperOrigin-RevId: 241814960
This commit is contained in:
commit
100ceee8ee
@ -386,6 +386,30 @@ tf_kernel_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
tf_cc_test(
|
||||||
|
name = "parallel_interleave_dataset_op_test",
|
||||||
|
size = "small",
|
||||||
|
srcs = ["parallel_interleave_dataset_op_test.cc"],
|
||||||
|
deps = [
|
||||||
|
":captured_function",
|
||||||
|
":dataset_test_base",
|
||||||
|
":dataset_utils",
|
||||||
|
":iterator_ops",
|
||||||
|
":parallel_interleave_dataset_op",
|
||||||
|
":tensor_slice_dataset_op",
|
||||||
|
"//tensorflow/core:core_cpu_internal",
|
||||||
|
"//tensorflow/core:dataset_ops_op_lib",
|
||||||
|
"//tensorflow/core:framework",
|
||||||
|
"//tensorflow/core:lib",
|
||||||
|
"//tensorflow/core:lib_internal",
|
||||||
|
"//tensorflow/core:test",
|
||||||
|
"//tensorflow/core:test_main",
|
||||||
|
"//tensorflow/core:testlib",
|
||||||
|
"//tensorflow/core/kernels:function_ops",
|
||||||
|
"//tensorflow/core/kernels:identity_op",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
cc_library(
|
cc_library(
|
||||||
name = "prefetch_autotuner",
|
name = "prefetch_autotuner",
|
||||||
srcs = ["prefetch_autotuner.cc"],
|
srcs = ["prefetch_autotuner.cc"],
|
||||||
|
@ -30,7 +30,78 @@ Status DatasetOpsTestBase::ExpectEqual(const Tensor& a, const Tensor& b) {
|
|||||||
// TODO(feihugis): figure out how to support variant tensors.
|
// TODO(feihugis): figure out how to support variant tensors.
|
||||||
#undef CASE
|
#undef CASE
|
||||||
default:
|
default:
|
||||||
return errors::Internal("Unsupported dtype", a.dtype());
|
return errors::Internal("Unsupported dtype: ", a.dtype());
|
||||||
|
}
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
bool compare(Tensor t1, Tensor t2) {
|
||||||
|
auto flat_t1 = t1.flat<T>();
|
||||||
|
auto flat_t2 = t2.flat<T>();
|
||||||
|
auto length = std::min(flat_t1.size(), flat_t2.size());
|
||||||
|
for (int i = 0; i < length; ++i) {
|
||||||
|
if (flat_t1(i) < flat_t2(i)) return true;
|
||||||
|
if (flat_t1(i) > flat_t2(i)) return false;
|
||||||
|
}
|
||||||
|
return flat_t1.size() < length;
|
||||||
|
}
|
||||||
|
|
||||||
|
Status DatasetOpsTestBase::ExpectEqual(std::vector<Tensor> produced_tensors,
|
||||||
|
std::vector<Tensor> expected_tensors,
|
||||||
|
bool expect_items_equal) {
|
||||||
|
if (produced_tensors.size() != expected_tensors.size()) {
|
||||||
|
return Status(tensorflow::errors::Internal(
|
||||||
|
"The two tensor vectors have different size (", produced_tensors.size(),
|
||||||
|
" v.s. ", expected_tensors.size(), ")"));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (produced_tensors.empty()) return Status::OK();
|
||||||
|
if (produced_tensors[0].dtype() != expected_tensors[0].dtype()) {
|
||||||
|
return Status(tensorflow::errors::Internal(
|
||||||
|
"The two tensor vectors have different dtypes (",
|
||||||
|
produced_tensors[0].dtype(), " v.s. ", expected_tensors[0].dtype(),
|
||||||
|
")"));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (expect_items_equal) {
|
||||||
|
const DataType& dtype = produced_tensors[0].dtype();
|
||||||
|
switch (dtype) {
|
||||||
|
#define CASE(DT) \
|
||||||
|
case DT: \
|
||||||
|
std::sort(produced_tensors.begin(), produced_tensors.end(), \
|
||||||
|
compare<EnumToDataType<DT>::Type>); \
|
||||||
|
std::sort(expected_tensors.begin(), expected_tensors.end(), \
|
||||||
|
compare<EnumToDataType<DT>::Type>); \
|
||||||
|
break;
|
||||||
|
CASE(DT_FLOAT);
|
||||||
|
CASE(DT_DOUBLE);
|
||||||
|
CASE(DT_INT32);
|
||||||
|
CASE(DT_UINT8);
|
||||||
|
CASE(DT_INT16);
|
||||||
|
CASE(DT_INT8);
|
||||||
|
CASE(DT_STRING);
|
||||||
|
CASE(DT_INT64);
|
||||||
|
CASE(DT_BOOL);
|
||||||
|
CASE(DT_QINT8);
|
||||||
|
CASE(DT_QUINT8);
|
||||||
|
CASE(DT_QINT32);
|
||||||
|
CASE(DT_QINT16);
|
||||||
|
CASE(DT_QUINT16);
|
||||||
|
CASE(DT_UINT16);
|
||||||
|
CASE(DT_HALF);
|
||||||
|
CASE(DT_UINT32);
|
||||||
|
CASE(DT_UINT64);
|
||||||
|
// TODO(feihugis): support other dtypes.
|
||||||
|
#undef CASE
|
||||||
|
default:
|
||||||
|
return errors::Internal("Unsupported dtype: ", dtype);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < produced_tensors.size(); ++i) {
|
||||||
|
TF_RETURN_IF_ERROR(DatasetOpsTestBase::ExpectEqual(produced_tensors[i],
|
||||||
|
expected_tensors[i]));
|
||||||
}
|
}
|
||||||
return Status::OK();
|
return Status::OK();
|
||||||
}
|
}
|
||||||
|
@ -51,6 +51,13 @@ class DatasetOpsTestBase : public ::testing::Test {
|
|||||||
// and value.
|
// and value.
|
||||||
static Status ExpectEqual(const Tensor& a, const Tensor& b);
|
static Status ExpectEqual(const Tensor& a, const Tensor& b);
|
||||||
|
|
||||||
|
// The method validates whether the two tensor vectors have the same tensors.
|
||||||
|
// If `expect_items_equal` is true, the method will only evaluate the two
|
||||||
|
// vectors have the same elements regardless of order.
|
||||||
|
static Status ExpectEqual(std::vector<Tensor> produced_tensors,
|
||||||
|
std::vector<Tensor> expected_tensors,
|
||||||
|
bool expect_items_equal);
|
||||||
|
|
||||||
// Creates a tensor with the specified dtype, shape, and value.
|
// Creates a tensor with the specified dtype, shape, and value.
|
||||||
template <typename T>
|
template <typename T>
|
||||||
static Tensor CreateTensor(TensorShape input_shape,
|
static Tensor CreateTensor(TensorShape input_shape,
|
||||||
|
@ -0,0 +1,963 @@
|
|||||||
|
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/core/kernels/data/dataset_test_base.h"
|
||||||
|
|
||||||
|
namespace tensorflow {
|
||||||
|
namespace data {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
constexpr char kNodeName[] = "parallel_interleave_dataset";
|
||||||
|
constexpr char kOpName[] = "ParallelInterleaveDatasetV2";
|
||||||
|
|
||||||
|
class ParallelInterleaveDatasetOpTest : public DatasetOpsTestBase {
|
||||||
|
protected:
|
||||||
|
// Creates `TensorSliceDataset` variant tensor from the input vector of
|
||||||
|
// tensors.
|
||||||
|
Status CreateTensorSliceDatasetTensor(
|
||||||
|
std::vector<Tensor> *const tensor_vector, Tensor *dataset_tensor) {
|
||||||
|
DatasetBase *tensor_slice_dataset;
|
||||||
|
TF_RETURN_IF_ERROR(CreateTensorSliceDataset(
|
||||||
|
"tensor_slice_node", tensor_vector, &tensor_slice_dataset));
|
||||||
|
TF_RETURN_IF_ERROR(
|
||||||
|
StoreDatasetInVariantTensor(tensor_slice_dataset, dataset_tensor));
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Creates a new `ParallelInterleaveDataset` op kernel
|
||||||
|
Status CreateParallelInterleaveDatasetKernel(
|
||||||
|
const FunctionDefHelper::AttrValueWrapper &func,
|
||||||
|
const DataTypeVector &output_types,
|
||||||
|
const std::vector<PartialTensorShape> &output_shapes, bool sloppy,
|
||||||
|
std::unique_ptr<OpKernel> *op_kernel) {
|
||||||
|
NodeDef node_def = test::function::NDef(
|
||||||
|
kNodeName, kOpName,
|
||||||
|
{"input_dataset", "cycle_length", "block_length", "num_parallel_calls"},
|
||||||
|
{{"f", func},
|
||||||
|
{"Targuments", {}},
|
||||||
|
{"output_types", output_types},
|
||||||
|
{"output_shapes", output_shapes},
|
||||||
|
{"sloppy", sloppy}});
|
||||||
|
TF_RETURN_IF_ERROR(CreateOpKernel(node_def, op_kernel));
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Creates a new `ParallelInterleaveDataset` op kernel context.
|
||||||
|
Status CreateInterleaveDatasetContext(
|
||||||
|
OpKernel *const op_kernel,
|
||||||
|
gtl::InlinedVector<TensorValue, 4> *const inputs,
|
||||||
|
std::unique_ptr<OpKernelContext> *context) {
|
||||||
|
TF_RETURN_IF_ERROR(CheckOpKernelInput(*op_kernel, *inputs));
|
||||||
|
TF_RETURN_IF_ERROR(CreateOpKernelContext(op_kernel, inputs, context));
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct TestCase {
|
||||||
|
std::vector<Tensor> input_tensors;
|
||||||
|
FunctionDefHelper::AttrValueWrapper func;
|
||||||
|
std::vector<FunctionDef> func_lib;
|
||||||
|
Tensor cycle_length;
|
||||||
|
Tensor block_length;
|
||||||
|
Tensor num_parallel_calls;
|
||||||
|
bool sloppy;
|
||||||
|
std::vector<Tensor> expected_outputs;
|
||||||
|
DataTypeVector expected_output_dtypes;
|
||||||
|
std::vector<PartialTensorShape> expected_output_shapes;
|
||||||
|
int64 expected_cardinality;
|
||||||
|
std::vector<int> breakpoints;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
std::vector<Tensor> ConvertToTensorVec(std::vector<T> values) {
|
||||||
|
std::vector<Tensor> tensors;
|
||||||
|
tensors.reserve(values.size());
|
||||||
|
for (auto &value : values) {
|
||||||
|
tensors.emplace_back(
|
||||||
|
DatasetOpsTestBase::CreateTensor<T>(TensorShape({1}), {value}));
|
||||||
|
}
|
||||||
|
return tensors;
|
||||||
|
}
|
||||||
|
|
||||||
|
FunctionDefHelper::AttrValueWrapper MakeTensorSliceDatasetFunc(
|
||||||
|
const DataTypeVector &output_types,
|
||||||
|
const std::vector<PartialTensorShape> &output_shapes) {
|
||||||
|
return FunctionDefHelper::FunctionRef(
|
||||||
|
/*name*/ "MakeTensorSliceDataset",
|
||||||
|
/*attrs*/ {{"Toutput_types", output_types},
|
||||||
|
{"output_shapes", output_shapes}});
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 1: cycle_length = 1, block_length = 1, num_parallel_calls = 1,
|
||||||
|
// sloppy = false
|
||||||
|
TestCase TestCase1() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*sloppy*/ false,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({0, 1, 2, 3, 4, 5, 6, 7, 8}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 2: cycle_length = 2, block_length = 1, num_parallel_calls = 2,
|
||||||
|
// sloppy = false
|
||||||
|
TestCase TestCase2() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ false,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({0, 3, 1, 4, 2, 5, 6, 7, 8}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 3: cycle_length = 3, block_length = 1, num_parallel_calls = 2,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase TestCase3() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({0, 3, 6, 1, 4, 7, 2, 5, 8}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 4: cycle_length = 5, block_length = 1, num_parallel_calls = 4,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase TestCase4() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {5}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({0, 3, 6, 1, 4, 7, 2, 5, 8}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 5: cycle_length = 2, block_length = 2, num_parallel_calls = 1,
|
||||||
|
// sloppy = false
|
||||||
|
TestCase TestCase5() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*sloppy*/ false,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "d", "e", "c", "f", "g", "h", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 6: cycle_length = 2, block_length = 3, num_parallel_calls = 2,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase TestCase6() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 7: cycle_length = 3, block_length = 2, num_parallel_calls = 2,
|
||||||
|
// sloppy = false
|
||||||
|
TestCase TestCase7() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ false,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "d", "e", "g", "h", "c", "f", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 8: cycle_length = 3, block_length = 3, num_parallel_calls = 3,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase TestCase8() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 9: cycle_length = 4, block_length = 4, num_parallel_calls = 4,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase TestCase9() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 10: cycle_length = 3, block_length = 3,
|
||||||
|
// num_parallel_calls = kAutoTune, sloppy = true
|
||||||
|
TestCase TestCase10() {
|
||||||
|
return {
|
||||||
|
/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<string>(
|
||||||
|
TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_STRING}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {4}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}),
|
||||||
|
{model::kAutoTune}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<string>({"a", "b", "c", "d", "e", "f", "g", "h", "i"}),
|
||||||
|
/*expected_output_dtypes*/ {DT_STRING},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {0, 4, 11}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 11: cycle_length = 0, block_length = 1, num_parallel_calls = 2,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase InvalidCycleLengthTestCase() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {0}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 12: cycle_length = 1, block_length = -1, num_parallel_calls = 2,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase InvalidBlockLengthTestCase() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {}};
|
||||||
|
}
|
||||||
|
|
||||||
|
// test case 13: cycle_length = 1, block_length = 1, num_parallel_calls = -5,
|
||||||
|
// sloppy = true
|
||||||
|
TestCase InvalidNumParallelCallsTestCase() {
|
||||||
|
return {/*input_tensors*/
|
||||||
|
{DatasetOpsTestBase::CreateTensor<int64>(
|
||||||
|
TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})},
|
||||||
|
/*func*/
|
||||||
|
MakeTensorSliceDatasetFunc(
|
||||||
|
DataTypeVector({DT_INT64}),
|
||||||
|
std::vector<PartialTensorShape>({PartialTensorShape({1})})),
|
||||||
|
/*func_lib*/ {test::function::MakeTensorSliceDataset()},
|
||||||
|
/*cycle_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*block_length*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
||||||
|
/*num_parallel_calls*/
|
||||||
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-5}),
|
||||||
|
/*sloppy*/ true,
|
||||||
|
/*expected_outputs*/
|
||||||
|
ConvertToTensorVec<int64>({}),
|
||||||
|
/*expected_output_dtypes*/ {DT_INT64},
|
||||||
|
/*expected_output_shapes*/ {PartialTensorShape({1})},
|
||||||
|
/*expected_cardinality*/ tensorflow::data::kUnknownCardinality,
|
||||||
|
/*breakpoints*/ {}};
|
||||||
|
}
|
||||||
|
|
||||||
|
class ParameterizedParallelInterleaveDatasetOpTest
|
||||||
|
: public ParallelInterleaveDatasetOpTest,
|
||||||
|
public ::testing::WithParamInterface<TestCase> {};
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, GetNext) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
||||||
|
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
|
||||||
|
&iterator_ctx));
|
||||||
|
std::unique_ptr<IteratorBase> iterator;
|
||||||
|
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
|
||||||
|
iterator_ctx.get(), "Iterator", &iterator));
|
||||||
|
bool end_of_sequence = false;
|
||||||
|
std::vector<Tensor> out_tensors;
|
||||||
|
while (!end_of_sequence) {
|
||||||
|
std::vector<Tensor> next;
|
||||||
|
TF_EXPECT_OK(
|
||||||
|
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
|
||||||
|
out_tensors.insert(out_tensors.end(), next.begin(), next.end());
|
||||||
|
}
|
||||||
|
|
||||||
|
TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_outputs,
|
||||||
|
/*expect_items_equal*/ test_case.sloppy));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(ParallelInterleaveDatasetOpTest, InvalidArguments) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
|
||||||
|
std::vector<TestCase> test_cases({InvalidCycleLengthTestCase(),
|
||||||
|
InvalidBlockLengthTestCase(),
|
||||||
|
InvalidNumParallelCallsTestCase()});
|
||||||
|
for (const auto &test_case : test_cases) {
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset =
|
||||||
|
test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(
|
||||||
|
&inputs_for_tensor_slice_dataset, &tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
EXPECT_EQ(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset)
|
||||||
|
.code(),
|
||||||
|
tensorflow::error::INVALID_ARGUMENT);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(ParallelInterleaveDatasetOpTest, DatasetNodeName) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = TestCase1();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
EXPECT_EQ(parallel_interleave_dataset->node_name(), kNodeName);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(ParallelInterleaveDatasetOpTest, DatasetTypeString) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = TestCase1();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
EXPECT_EQ(parallel_interleave_dataset->type_string(), kOpName);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetOutputDtypes) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
TF_EXPECT_OK(VerifyTypesMatch(parallel_interleave_dataset->output_dtypes(),
|
||||||
|
test_case.expected_output_dtypes));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetOutputShapes) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
TF_EXPECT_OK(
|
||||||
|
VerifyShapesCompatible(parallel_interleave_dataset->output_shapes(),
|
||||||
|
test_case.expected_output_shapes));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, Cardinality) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
EXPECT_EQ(parallel_interleave_dataset->Cardinality(),
|
||||||
|
test_case.expected_cardinality);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, DatasetSave) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<SerializationContext> serialization_ctx;
|
||||||
|
TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx));
|
||||||
|
VariantTensorData data;
|
||||||
|
VariantTensorDataWriter writer(&data);
|
||||||
|
TF_ASSERT_OK(
|
||||||
|
parallel_interleave_dataset->Save(serialization_ctx.get(), &writer));
|
||||||
|
TF_ASSERT_OK(writer.Flush());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, IteratorOutputDtypes) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
||||||
|
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
|
||||||
|
&iterator_ctx));
|
||||||
|
std::unique_ptr<IteratorBase> iterator;
|
||||||
|
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
|
||||||
|
iterator_ctx.get(), "Iterator", &iterator));
|
||||||
|
|
||||||
|
TF_EXPECT_OK(VerifyTypesMatch(iterator->output_dtypes(),
|
||||||
|
test_case.expected_output_dtypes));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, IteratorOutputShapes) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
||||||
|
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
|
||||||
|
&iterator_ctx));
|
||||||
|
std::unique_ptr<IteratorBase> iterator;
|
||||||
|
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
|
||||||
|
iterator_ctx.get(), "Iterator", &iterator));
|
||||||
|
|
||||||
|
TF_EXPECT_OK(VerifyShapesCompatible(iterator->output_shapes(),
|
||||||
|
test_case.expected_output_shapes));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(ParallelInterleaveDatasetOpTest, IteratorOutputPrefix) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = TestCase1();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
||||||
|
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
|
||||||
|
&iterator_ctx));
|
||||||
|
std::unique_ptr<IteratorBase> iterator;
|
||||||
|
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
|
||||||
|
iterator_ctx.get(), "Iterator", &iterator));
|
||||||
|
|
||||||
|
EXPECT_EQ(iterator->prefix(), "Iterator::ParallelInterleaveV2");
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(ParameterizedParallelInterleaveDatasetOpTest, Roundtrip) {
|
||||||
|
int thread_num = 2, cpu_num = 2;
|
||||||
|
const TestCase &test_case = GetParam();
|
||||||
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
||||||
|
TF_ASSERT_OK(InitFunctionLibraryRuntime(test_case.func_lib, cpu_num));
|
||||||
|
|
||||||
|
std::unique_ptr<OpKernel> parallel_interleave_dataset_kernel;
|
||||||
|
TF_ASSERT_OK(CreateParallelInterleaveDatasetKernel(
|
||||||
|
test_case.func, test_case.expected_output_dtypes,
|
||||||
|
test_case.expected_output_shapes, test_case.sloppy,
|
||||||
|
¶llel_interleave_dataset_kernel));
|
||||||
|
|
||||||
|
Tensor tensor_slice_dataset_tensor(DT_VARIANT, TensorShape({}));
|
||||||
|
std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors;
|
||||||
|
TF_ASSERT_OK(CreateTensorSliceDatasetTensor(&inputs_for_tensor_slice_dataset,
|
||||||
|
&tensor_slice_dataset_tensor));
|
||||||
|
Tensor cycle_length = test_case.cycle_length;
|
||||||
|
Tensor block_length = test_case.block_length;
|
||||||
|
Tensor num_parallel_calls = test_case.num_parallel_calls;
|
||||||
|
gtl::InlinedVector<TensorValue, 4> inputs({&tensor_slice_dataset_tensor,
|
||||||
|
&cycle_length, &block_length,
|
||||||
|
&num_parallel_calls});
|
||||||
|
std::unique_ptr<OpKernelContext> parallel_interleave_dataset_context;
|
||||||
|
TF_ASSERT_OK(CreateInterleaveDatasetContext(
|
||||||
|
parallel_interleave_dataset_kernel.get(), &inputs,
|
||||||
|
¶llel_interleave_dataset_context));
|
||||||
|
DatasetBase *parallel_interleave_dataset;
|
||||||
|
TF_ASSERT_OK(CreateDataset(parallel_interleave_dataset_kernel.get(),
|
||||||
|
parallel_interleave_dataset_context.get(),
|
||||||
|
¶llel_interleave_dataset));
|
||||||
|
core::ScopedUnref scoped_unref(parallel_interleave_dataset);
|
||||||
|
|
||||||
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
||||||
|
TF_ASSERT_OK(CreateIteratorContext(parallel_interleave_dataset_context.get(),
|
||||||
|
&iterator_ctx));
|
||||||
|
std::unique_ptr<IteratorBase> iterator;
|
||||||
|
TF_ASSERT_OK(parallel_interleave_dataset->MakeIterator(
|
||||||
|
iterator_ctx.get(), "Iterator", &iterator));
|
||||||
|
|
||||||
|
std::unique_ptr<SerializationContext> serialization_ctx;
|
||||||
|
TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx));
|
||||||
|
|
||||||
|
bool end_of_sequence = false;
|
||||||
|
std::vector<Tensor> out_tensors;
|
||||||
|
int cur_iteration = 0;
|
||||||
|
const std::vector<int> &breakpoints = test_case.breakpoints;
|
||||||
|
for (int breakpoint : breakpoints) {
|
||||||
|
VariantTensorData data;
|
||||||
|
VariantTensorDataWriter writer(&data);
|
||||||
|
TF_EXPECT_OK(iterator->Save(serialization_ctx.get(), &writer));
|
||||||
|
TF_EXPECT_OK(writer.Flush());
|
||||||
|
VariantTensorDataReader reader(&data);
|
||||||
|
TF_EXPECT_OK(iterator->Restore(iterator_ctx.get(), &reader));
|
||||||
|
|
||||||
|
while (cur_iteration <= breakpoint) {
|
||||||
|
std::vector<Tensor> next;
|
||||||
|
TF_EXPECT_OK(
|
||||||
|
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
|
||||||
|
out_tensors.insert(out_tensors.end(), next.begin(), next.end());
|
||||||
|
cur_iteration++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_outputs,
|
||||||
|
/*expect_items_equal*/ test_case.sloppy));
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_SUITE_P(
|
||||||
|
ParallelInterleaveDatasetOpTest,
|
||||||
|
ParameterizedParallelInterleaveDatasetOpTest,
|
||||||
|
::testing::ValuesIn(std::vector<TestCase>(
|
||||||
|
{TestCase1(), TestCase2(), TestCase3(), TestCase4(), TestCase5(),
|
||||||
|
TestCase6(), TestCase7(), TestCase8(), TestCase9(), TestCase10()})));
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
} // namespace data
|
||||||
|
} // namespace tensorflow
|
Loading…
Reference in New Issue
Block a user