Automated rollback of change 131423744
Change: 131437266
This commit is contained in:
parent
8c37911d86
commit
0f867ebf83
30
WORKSPACE
30
WORKSPACE
@ -234,13 +234,6 @@ new_git_repository(
|
||||
tag = "v1.2.2",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "numericjs",
|
||||
build_file = "bower.BUILD",
|
||||
remote = "https://github.com/sloisel/numeric.git",
|
||||
tag = "v1.2.6",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "paper_behaviors",
|
||||
build_file = "bower.BUILD",
|
||||
@ -311,13 +304,6 @@ new_git_repository(
|
||||
tag = "v1.1.4",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "paper_listbox",
|
||||
build_file = "bower.BUILD",
|
||||
remote = "https://github.com/polymerelements/paper-listbox.git",
|
||||
tag = "v1.1.2",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "paper_material",
|
||||
build_file = "bower.BUILD",
|
||||
@ -420,7 +406,7 @@ new_git_repository(
|
||||
name = "polymer",
|
||||
build_file = "bower.BUILD",
|
||||
remote = "https://github.com/polymer/polymer.git",
|
||||
tag = "v1.6.1",
|
||||
tag = "v1.6.0",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
@ -430,13 +416,6 @@ new_git_repository(
|
||||
tag = "v1.0.0",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "three_js",
|
||||
build_file = "bower.BUILD",
|
||||
remote = "https://github.com/mrdoob/three.js.git",
|
||||
tag = "r77",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "web_animations_js",
|
||||
build_file = "bower.BUILD",
|
||||
@ -450,10 +429,3 @@ new_git_repository(
|
||||
remote = "https://github.com/webcomponents/webcomponentsjs.git",
|
||||
tag = "v0.7.22",
|
||||
)
|
||||
|
||||
new_git_repository(
|
||||
name = "weblas",
|
||||
build_file = "bower.BUILD",
|
||||
remote = "https://github.com/waylonflinn/weblas.git",
|
||||
tag = "v0.9.0",
|
||||
)
|
||||
|
334
bower.BUILD
334
bower.BUILD
@ -320,41 +320,6 @@ filegroup(
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "numericjs",
|
||||
srcs = [
|
||||
"benchmark.html",
|
||||
"benchmark2.html",
|
||||
"demo.html",
|
||||
"documentation.html",
|
||||
"myworker.js",
|
||||
"resources/style.css",
|
||||
"resources/style-ie.css",
|
||||
"src/documentation.html",
|
||||
"src/numeric.js",
|
||||
"src/quadprog.js",
|
||||
"src/seedrandom.js",
|
||||
"src/sparse2.js",
|
||||
"src/svd.js",
|
||||
"tools/XMLHttpRequest.js",
|
||||
"tools/closurelib.js",
|
||||
"tools/excanvas.min.js",
|
||||
"tools/goog-require.js",
|
||||
"tools/jquery.flot.image.js",
|
||||
"tools/jquery.flot.image.min.js",
|
||||
"tools/jquery.flot.js",
|
||||
"tools/jquery.flot.min.js",
|
||||
"tools/jquery-1.7.1.js",
|
||||
"tools/jquery-1.7.1.min.js",
|
||||
"tools/json2.js",
|
||||
"tools/megalib.js",
|
||||
"tools/mytest.html",
|
||||
"tools/sylvester.js",
|
||||
"tools/unit2.js",
|
||||
"tools/workshop.html",
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "paper_behaviors",
|
||||
srcs = [
|
||||
@ -457,14 +422,6 @@ filegroup(
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "paper_listbox",
|
||||
srcs = [
|
||||
"index.html",
|
||||
"paper-listbox.html",
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "paper_material",
|
||||
srcs = [
|
||||
@ -616,275 +573,6 @@ filegroup(
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "three_js",
|
||||
srcs = [
|
||||
"build/three.js",
|
||||
"build/three.min.js",
|
||||
"examples/js/AnimationClipCreator.js",
|
||||
"examples/js/BlendCharacter.js",
|
||||
"examples/js/BlendCharacterGui.js",
|
||||
"examples/js/BufferGeometryUtils.js",
|
||||
"examples/js/Car.js",
|
||||
"examples/js/Cloth.js",
|
||||
"examples/js/CurveExtras.js",
|
||||
"examples/js/Detector.js",
|
||||
"examples/js/Encodings.js",
|
||||
"examples/js/GPUParticleSystem.js",
|
||||
"examples/js/Gyroscope.js",
|
||||
"examples/js/Half.js",
|
||||
"examples/js/ImprovedNoise.js",
|
||||
"examples/js/MD2Character.js",
|
||||
"examples/js/MD2CharacterComplex.js",
|
||||
"examples/js/MarchingCubes.js",
|
||||
"examples/js/Mirror.js",
|
||||
"examples/js/MorphAnimMesh.js",
|
||||
"examples/js/MorphAnimation.js",
|
||||
"examples/js/Ocean.js",
|
||||
"examples/js/Octree.js",
|
||||
"examples/js/PRNG.js",
|
||||
"examples/js/ParametricGeometries.js",
|
||||
"examples/js/RollerCoaster.js",
|
||||
"examples/js/ShaderGodRays.js",
|
||||
"examples/js/ShaderSkin.js",
|
||||
"examples/js/ShaderTerrain.js",
|
||||
"examples/js/ShaderToon.js",
|
||||
"examples/js/SimplexNoise.js",
|
||||
"examples/js/SimulationRenderer.js",
|
||||
"examples/js/SkyShader.js",
|
||||
"examples/js/TimelinerController.js",
|
||||
"examples/js/TypedArrayUtils.js",
|
||||
"examples/js/UCSCharacter.js",
|
||||
"examples/js/Volume.js",
|
||||
"examples/js/VolumeSlice.js",
|
||||
"examples/js/WaterShader.js",
|
||||
"examples/js/WebVR.js",
|
||||
"examples/js/animation/CCDIKSolver.js",
|
||||
"examples/js/animation/MMDPhysics.js",
|
||||
"examples/js/cameras/CinematicCamera.js",
|
||||
"examples/js/cameras/CombinedCamera.js",
|
||||
"examples/js/controls/DeviceOrientationControls.js",
|
||||
"examples/js/controls/DragControls.js",
|
||||
"examples/js/controls/EditorControls.js",
|
||||
"examples/js/controls/FirstPersonControls.js",
|
||||
"examples/js/controls/FlyControls.js",
|
||||
"examples/js/controls/MouseControls.js",
|
||||
"examples/js/controls/OrbitControls.js",
|
||||
"examples/js/controls/OrthographicTrackballControls.js",
|
||||
"examples/js/controls/PointerLockControls.js",
|
||||
"examples/js/controls/TrackballControls.js",
|
||||
"examples/js/controls/TransformControls.js",
|
||||
"examples/js/controls/VRControls.js",
|
||||
"examples/js/crossfade/gui.js",
|
||||
"examples/js/crossfade/scenes.js",
|
||||
"examples/js/crossfade/transition.js",
|
||||
"examples/js/curves/NURBSCurve.js",
|
||||
"examples/js/curves/NURBSSurface.js",
|
||||
"examples/js/curves/NURBSUtils.js",
|
||||
"examples/js/effects/AnaglyphEffect.js",
|
||||
"examples/js/effects/AsciiEffect.js",
|
||||
"examples/js/effects/ParallaxBarrierEffect.js",
|
||||
"examples/js/effects/PeppersGhostEffect.js",
|
||||
"examples/js/effects/StereoEffect.js",
|
||||
"examples/js/effects/VREffect.js",
|
||||
"examples/js/exporters/OBJExporter.js",
|
||||
"examples/js/exporters/STLBinaryExporter.js",
|
||||
"examples/js/exporters/STLExporter.js",
|
||||
"examples/js/exporters/TypedGeometryExporter.js",
|
||||
"examples/js/geometries/ConvexGeometry.js",
|
||||
"examples/js/geometries/DecalGeometry.js",
|
||||
"examples/js/geometries/TeapotBufferGeometry.js",
|
||||
"examples/js/geometries/hilbert2D.js",
|
||||
"examples/js/geometries/hilbert3D.js",
|
||||
"examples/js/libs/ammo.js",
|
||||
"examples/js/libs/charsetencoder.min.js",
|
||||
"examples/js/libs/dat.gui.min.js",
|
||||
"examples/js/libs/earcut.js",
|
||||
"examples/js/libs/inflate.min.js",
|
||||
"examples/js/libs/jszip.min.js",
|
||||
"examples/js/libs/msgpack-js.js",
|
||||
"examples/js/libs/pnltri.min.js",
|
||||
"examples/js/libs/stats.min.js",
|
||||
"examples/js/libs/system.min.js",
|
||||
"examples/js/libs/timeliner_gui.min.js",
|
||||
"examples/js/libs/tween.min.js",
|
||||
"examples/js/libs/zlib_and_gzip.min.js",
|
||||
"examples/js/loaders/3MFLoader.js",
|
||||
"examples/js/loaders/AMFLoader.js",
|
||||
"examples/js/loaders/AWDLoader.js",
|
||||
"examples/js/loaders/AssimpJSONLoader.js",
|
||||
"examples/js/loaders/BabylonLoader.js",
|
||||
"examples/js/loaders/BinaryLoader.js",
|
||||
"examples/js/loaders/ColladaLoader.js",
|
||||
"examples/js/loaders/ColladaLoader2.js",
|
||||
"examples/js/loaders/DDSLoader.js",
|
||||
"examples/js/loaders/FBXLoader.js",
|
||||
"examples/js/loaders/HDRCubeTextureLoader.js",
|
||||
"examples/js/loaders/KMZLoader.js",
|
||||
"examples/js/loaders/MD2Loader.js",
|
||||
"examples/js/loaders/MMDLoader.js",
|
||||
"examples/js/loaders/MTLLoader.js",
|
||||
"examples/js/loaders/NRRDLoader.js",
|
||||
"examples/js/loaders/OBJLoader.js",
|
||||
"examples/js/loaders/PCDLoader.js",
|
||||
"examples/js/loaders/PDBLoader.js",
|
||||
"examples/js/loaders/PLYLoader.js",
|
||||
"examples/js/loaders/PVRLoader.js",
|
||||
"examples/js/loaders/PlayCanvasLoader.js",
|
||||
"examples/js/loaders/RGBELoader.js",
|
||||
"examples/js/loaders/STLLoader.js",
|
||||
"examples/js/loaders/SVGLoader.js",
|
||||
"examples/js/loaders/TGALoader.js",
|
||||
"examples/js/loaders/UTF8Loader.js",
|
||||
"examples/js/loaders/VRMLLoader.js",
|
||||
"examples/js/loaders/VTKLoader.js",
|
||||
"examples/js/loaders/collada/Animation.js",
|
||||
"examples/js/loaders/collada/AnimationHandler.js",
|
||||
"examples/js/loaders/collada/KeyFrameAnimation.js",
|
||||
"examples/js/loaders/ctm/CTMLoader.js",
|
||||
"examples/js/loaders/ctm/CTMWorker.js",
|
||||
"examples/js/loaders/ctm/ctm.js",
|
||||
"examples/js/loaders/ctm/lzma.js",
|
||||
"examples/js/loaders/deprecated/SceneLoader.js",
|
||||
"examples/js/loaders/gltf/glTF-parser.js",
|
||||
"examples/js/loaders/gltf/glTFAnimation.js",
|
||||
"examples/js/loaders/gltf/glTFLoader.js",
|
||||
"examples/js/loaders/gltf/glTFLoaderUtils.js",
|
||||
"examples/js/loaders/gltf/glTFShaders.js",
|
||||
"examples/js/loaders/gltf/gltfUtilities.js",
|
||||
"examples/js/loaders/sea3d/SEA3D.js",
|
||||
"examples/js/loaders/sea3d/SEA3DDeflate.js",
|
||||
"examples/js/loaders/sea3d/SEA3DLZMA.js",
|
||||
"examples/js/loaders/sea3d/SEA3DLegacy.js",
|
||||
"examples/js/loaders/sea3d/SEA3DLoader.js",
|
||||
"examples/js/math/ColorConverter.js",
|
||||
"examples/js/math/Lut.js",
|
||||
"examples/js/modifiers/BufferSubdivisionModifier.js",
|
||||
"examples/js/modifiers/ExplodeModifier.js",
|
||||
"examples/js/modifiers/SubdivisionModifier.js",
|
||||
"examples/js/modifiers/TessellateModifier.js",
|
||||
"examples/js/nodes/BuilderNode.js",
|
||||
"examples/js/nodes/ConstNode.js",
|
||||
"examples/js/nodes/FunctionCallNode.js",
|
||||
"examples/js/nodes/FunctionNode.js",
|
||||
"examples/js/nodes/GLNode.js",
|
||||
"examples/js/nodes/InputNode.js",
|
||||
"examples/js/nodes/NodeLib.js",
|
||||
"examples/js/nodes/NodeMaterial.js",
|
||||
"examples/js/nodes/RawNode.js",
|
||||
"examples/js/nodes/TempNode.js",
|
||||
"examples/js/nodes/accessors/CameraNode.js",
|
||||
"examples/js/nodes/accessors/ColorsNode.js",
|
||||
"examples/js/nodes/accessors/LightNode.js",
|
||||
"examples/js/nodes/accessors/NormalNode.js",
|
||||
"examples/js/nodes/accessors/PositionNode.js",
|
||||
"examples/js/nodes/accessors/ReflectNode.js",
|
||||
"examples/js/nodes/accessors/ScreenUVNode.js",
|
||||
"examples/js/nodes/accessors/UVNode.js",
|
||||
"examples/js/nodes/inputs/ColorNode.js",
|
||||
"examples/js/nodes/inputs/CubeTextureNode.js",
|
||||
"examples/js/nodes/inputs/FloatNode.js",
|
||||
"examples/js/nodes/inputs/IntNode.js",
|
||||
"examples/js/nodes/inputs/Matrix4Node.js",
|
||||
"examples/js/nodes/inputs/MirrorNode.js",
|
||||
"examples/js/nodes/inputs/ScreenNode.js",
|
||||
"examples/js/nodes/inputs/TextureNode.js",
|
||||
"examples/js/nodes/inputs/Vector2Node.js",
|
||||
"examples/js/nodes/inputs/Vector3Node.js",
|
||||
"examples/js/nodes/inputs/Vector4Node.js",
|
||||
"examples/js/nodes/materials/PhongNode.js",
|
||||
"examples/js/nodes/materials/PhongNodeMaterial.js",
|
||||
"examples/js/nodes/materials/StandardNode.js",
|
||||
"examples/js/nodes/materials/StandardNodeMaterial.js",
|
||||
"examples/js/nodes/math/Math1Node.js",
|
||||
"examples/js/nodes/math/Math2Node.js",
|
||||
"examples/js/nodes/math/Math3Node.js",
|
||||
"examples/js/nodes/math/OperatorNode.js",
|
||||
"examples/js/nodes/postprocessing/NodePass.js",
|
||||
"examples/js/nodes/utils/ColorAdjustmentNode.js",
|
||||
"examples/js/nodes/utils/JoinNode.js",
|
||||
"examples/js/nodes/utils/LuminanceNode.js",
|
||||
"examples/js/nodes/utils/NoiseNode.js",
|
||||
"examples/js/nodes/utils/NormalMapNode.js",
|
||||
"examples/js/nodes/utils/ResolutionNode.js",
|
||||
"examples/js/nodes/utils/RoughnessToBlinnExponentNode.js",
|
||||
"examples/js/nodes/utils/SwitchNode.js",
|
||||
"examples/js/nodes/utils/TimerNode.js",
|
||||
"examples/js/nodes/utils/VelocityNode.js",
|
||||
"examples/js/objects/ShadowMesh.js",
|
||||
"examples/js/pmrem/PMREMCubeUVPacker.js",
|
||||
"examples/js/pmrem/PMREMGenerator.js",
|
||||
"examples/js/postprocessing/AdaptiveToneMappingPass.js",
|
||||
"examples/js/postprocessing/BloomPass.js",
|
||||
"examples/js/postprocessing/BokehPass.js",
|
||||
"examples/js/postprocessing/ClearPass.js",
|
||||
"examples/js/postprocessing/DotScreenPass.js",
|
||||
"examples/js/postprocessing/EffectComposer.js",
|
||||
"examples/js/postprocessing/FilmPass.js",
|
||||
"examples/js/postprocessing/GlitchPass.js",
|
||||
"examples/js/postprocessing/ManualMSAARenderPass.js",
|
||||
"examples/js/postprocessing/MaskPass.js",
|
||||
"examples/js/postprocessing/RenderPass.js",
|
||||
"examples/js/postprocessing/SMAAPass.js",
|
||||
"examples/js/postprocessing/SavePass.js",
|
||||
"examples/js/postprocessing/ShaderPass.js",
|
||||
"examples/js/postprocessing/TAARenderPass.js",
|
||||
"examples/js/postprocessing/TexturePass.js",
|
||||
"examples/js/renderers/CSS2DRenderer.js",
|
||||
"examples/js/renderers/CSS3DRenderer.js",
|
||||
"examples/js/renderers/CanvasRenderer.js",
|
||||
"examples/js/renderers/Projector.js",
|
||||
"examples/js/renderers/RaytracingRenderer.js",
|
||||
"examples/js/renderers/RaytracingWorker.js",
|
||||
"examples/js/renderers/SVGRenderer.js",
|
||||
"examples/js/renderers/SoftwareRenderer.js",
|
||||
"examples/js/shaders/BasicShader.js",
|
||||
"examples/js/shaders/BleachBypassShader.js",
|
||||
"examples/js/shaders/BlendShader.js",
|
||||
"examples/js/shaders/BokehShader.js",
|
||||
"examples/js/shaders/BokehShader2.js",
|
||||
"examples/js/shaders/BrightnessContrastShader.js",
|
||||
"examples/js/shaders/ColorCorrectionShader.js",
|
||||
"examples/js/shaders/ColorifyShader.js",
|
||||
"examples/js/shaders/ConvolutionShader.js",
|
||||
"examples/js/shaders/CopyShader.js",
|
||||
"examples/js/shaders/DOFMipMapShader.js",
|
||||
"examples/js/shaders/DigitalGlitch.js",
|
||||
"examples/js/shaders/DotScreenShader.js",
|
||||
"examples/js/shaders/EdgeShader.js",
|
||||
"examples/js/shaders/EdgeShader2.js",
|
||||
"examples/js/shaders/FXAAShader.js",
|
||||
"examples/js/shaders/FilmShader.js",
|
||||
"examples/js/shaders/FocusShader.js",
|
||||
"examples/js/shaders/FresnelShader.js",
|
||||
"examples/js/shaders/GammaCorrectionShader.js",
|
||||
"examples/js/shaders/HorizontalBlurShader.js",
|
||||
"examples/js/shaders/HorizontalTiltShiftShader.js",
|
||||
"examples/js/shaders/HueSaturationShader.js",
|
||||
"examples/js/shaders/KaleidoShader.js",
|
||||
"examples/js/shaders/LuminosityShader.js",
|
||||
"examples/js/shaders/MirrorShader.js",
|
||||
"examples/js/shaders/NormalMapShader.js",
|
||||
"examples/js/shaders/OceanShaders.js",
|
||||
"examples/js/shaders/ParallaxShader.js",
|
||||
"examples/js/shaders/RGBShiftShader.js",
|
||||
"examples/js/shaders/SMAAShader.js",
|
||||
"examples/js/shaders/SSAOShader.js",
|
||||
"examples/js/shaders/SepiaShader.js",
|
||||
"examples/js/shaders/TechnicolorShader.js",
|
||||
"examples/js/shaders/ToneMapShader.js",
|
||||
"examples/js/shaders/TriangleBlurShader.js",
|
||||
"examples/js/shaders/UnpackDepthRGBAShader.js",
|
||||
"examples/js/shaders/VerticalBlurShader.js",
|
||||
"examples/js/shaders/VerticalTiltShiftShader.js",
|
||||
"examples/js/shaders/VignetteShader.js",
|
||||
"examples/js/utils/GeometryUtils.js",
|
||||
"examples/js/utils/ImageUtils.js",
|
||||
"examples/js/utils/ShadowMapViewer.js",
|
||||
"examples/js/utils/UVsDebug.js",
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "web_animations_js",
|
||||
srcs = [
|
||||
@ -912,25 +600,3 @@ filegroup(
|
||||
"webcomponents-lite.min.js",
|
||||
],
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "weblas",
|
||||
srcs = [
|
||||
"benchmark.html",
|
||||
"benchmark/sgemm.js",
|
||||
"dist/weblas.js",
|
||||
"index.js",
|
||||
"lib/globals.js",
|
||||
"lib/pipeline.js",
|
||||
"lib/saxpycalculator.js",
|
||||
"lib/sclmpcalculator.js",
|
||||
"lib/sdwnscalculator.js",
|
||||
"lib/sgemmcalculator.js",
|
||||
"lib/sscalcalculator.js",
|
||||
"lib/tensor.js",
|
||||
"lib/test.js",
|
||||
"lib/webgl.js",
|
||||
"test.html",
|
||||
"test/data/generate.js",
|
||||
],
|
||||
)
|
||||
|
@ -148,7 +148,6 @@ filegroup(
|
||||
"//tensorflow/tensorboard/app:all_files",
|
||||
"//tensorflow/tensorboard/backend:all_files",
|
||||
"//tensorflow/tensorboard/components:all_files",
|
||||
"//tensorflow/tensorboard/components/vz-projector:all_files",
|
||||
"//tensorflow/tensorboard/lib:all_files",
|
||||
"//tensorflow/tensorboard/lib/python:all_files",
|
||||
"//tensorflow/tensorboard/scripts:all_files",
|
||||
|
@ -61,7 +61,6 @@
|
||||
"iron-validatable-behavior": "PolymerElements/iron-validatable-behavior#1.1.1",
|
||||
"lodash": "3.8.0",
|
||||
"neon-animation": "PolymerElements/neon-animation#1.2.2",
|
||||
"numericjs": "1.2.6",
|
||||
"paper-behaviors": "PolymerElements/paper-behaviors#1.0.11",
|
||||
"paper-button": "PolymerElements/paper-button#1.0.11",
|
||||
"paper-checkbox": "PolymerElements/paper-checkbox#1.1.3",
|
||||
@ -72,7 +71,6 @@
|
||||
"paper-icon-button": "PolymerElements/paper-icon-button#1.1.1",
|
||||
"paper-input": "PolymerElements/paper-input#1.1.14",
|
||||
"paper-item": "PolymerElements/paper-item#1.1.4",
|
||||
"paper-listbox": "PolymerElements/paper-listbox#1.1.2",
|
||||
"paper-material": "PolymerElements/paper-material#1.0.6",
|
||||
"paper-menu": "PolymerElements/paper-menu#1.2.2",
|
||||
"paper-menu-button": "PolymerElements/paper-menu-button#1.5.0",
|
||||
@ -87,12 +85,10 @@
|
||||
"paper-toolbar": "PolymerElements/paper-toolbar#1.1.4",
|
||||
"paper-tooltip": "PolymerElements/paper-tooltip#1.1.2",
|
||||
"plottable": "1.16.1",
|
||||
"polymer": "1.6.1",
|
||||
"polymer": "1.6.0",
|
||||
"promise-polyfill": "polymerlabs/promise-polyfill#1.0.0",
|
||||
"three.js": "threejs#r77",
|
||||
"web-animations-js": "web-animations/web-animations-js#2.2.1",
|
||||
"webcomponentsjs": "webcomponents/webcomponentsjs#0.7.22",
|
||||
"weblas": "0.9.0"
|
||||
"webcomponentsjs": "webcomponents/webcomponentsjs#0.7.22"
|
||||
},
|
||||
"description": "TensorBoard: Visualizations for TensorFlow",
|
||||
"devDependencies": {
|
||||
@ -141,7 +137,6 @@
|
||||
"iron-validatable-behavior": "1.1.1",
|
||||
"lodash": "3.8.0",
|
||||
"neon-animation": "1.2.2",
|
||||
"numericjs": "1.2.6",
|
||||
"paper-behaviors": "1.0.11",
|
||||
"paper-button": "1.0.11",
|
||||
"paper-checkbox": "1.1.3",
|
||||
@ -152,7 +147,6 @@
|
||||
"paper-icon-button": "1.1.1",
|
||||
"paper-input": "1.1.14",
|
||||
"paper-item": "1.1.4",
|
||||
"paper-listbox": "1.1.2",
|
||||
"paper-material": "1.0.6",
|
||||
"paper-menu": "1.2.2",
|
||||
"paper-menu-button": "1.5.0",
|
||||
@ -167,12 +161,10 @@
|
||||
"paper-toolbar": "1.1.4",
|
||||
"paper-tooltip": "1.1.2",
|
||||
"plottable": "1.16.1",
|
||||
"polymer": "1.6.1",
|
||||
"polymer": "1.6.0",
|
||||
"promise-polyfill": "1.0.0",
|
||||
"three.js": "threejs#r77",
|
||||
"web-animations-js": "2.2.1",
|
||||
"webcomponentsjs": "0.7.22",
|
||||
"weblas": "0.9.0"
|
||||
"webcomponentsjs": "0.7.22"
|
||||
},
|
||||
"version": "0.0.0"
|
||||
}
|
||||
|
@ -35,7 +35,6 @@ filegroup(
|
||||
"@iron_validatable_behavior//:iron_validatable_behavior",
|
||||
"@lodash//:lodash",
|
||||
"@neon_animation//:neon_animation",
|
||||
"@numericjs//:numericjs",
|
||||
"@paper_behaviors//:paper_behaviors",
|
||||
"@paper_button//:paper_button",
|
||||
"@paper_checkbox//:paper_checkbox",
|
||||
@ -46,7 +45,6 @@ filegroup(
|
||||
"@paper_icon_button//:paper_icon_button",
|
||||
"@paper_input//:paper_input",
|
||||
"@paper_item//:paper_item",
|
||||
"@paper_listbox//:paper_listbox",
|
||||
"@paper_material//:paper_material",
|
||||
"@paper_menu//:paper_menu",
|
||||
"@paper_menu_button//:paper_menu_button",
|
||||
@ -63,9 +61,7 @@ filegroup(
|
||||
"@plottable//:plottable",
|
||||
"@polymer//:polymer",
|
||||
"@promise_polyfill//:promise_polyfill",
|
||||
"@three_js//:three_js",
|
||||
"@web_animations_js//:web_animations_js",
|
||||
"@webcomponentsjs//:webcomponentsjs",
|
||||
"@weblas//:weblas",
|
||||
],
|
||||
)
|
||||
|
@ -1,19 +0,0 @@
|
||||
# Description:
|
||||
# Package for the Embedding Projector component.
|
||||
package(default_visibility = ["//tensorflow:internal"])
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
|
||||
filegroup(
|
||||
name = "all_files",
|
||||
srcs = glob(
|
||||
["**/*"],
|
||||
exclude = [
|
||||
"**/METADATA",
|
||||
"**/OWNERS",
|
||||
],
|
||||
),
|
||||
visibility = ["//tensorflow:__subpackages__"],
|
||||
)
|
@ -1,51 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
/** Delay for running async tasks, in milliseconds. */
|
||||
const ASYNC_DELAY = 15;
|
||||
|
||||
/**
|
||||
* Runs an expensive task asynchronously with some delay
|
||||
* so that it doesn't block the UI thread immediately.
|
||||
*/
|
||||
export function runAsyncTask<T>(message: string, task: () => T): Promise<T> {
|
||||
updateMessage(message);
|
||||
return new Promise<T>((resolve, reject) => {
|
||||
d3.timer(() => {
|
||||
try {
|
||||
let result = task();
|
||||
// Clearing the old message.
|
||||
updateMessage();
|
||||
resolve(result);
|
||||
} catch (ex) {
|
||||
updateMessage('Error: ' + ex.message);
|
||||
reject(ex);
|
||||
}
|
||||
return true;
|
||||
}, ASYNC_DELAY);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the user message at the top of the page. If the provided msg is
|
||||
* null, the message box is hidden from the user.
|
||||
*/
|
||||
export function updateMessage(msg?: string): void {
|
||||
if (msg == null) {
|
||||
d3.select('#notify-msg').style('display', 'none');
|
||||
} else {
|
||||
d3.select('#notify-msg').style('display', 'block').text(msg);
|
||||
}
|
||||
}
|
@ -1,472 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
/**
|
||||
* This is a fork of the Karpathy's TSNE.js (original license below).
|
||||
* This fork implements Barnes-Hut approximation and runs in O(NlogN)
|
||||
* time, as opposed to the Karpathy's O(N^2) version.
|
||||
*
|
||||
* @author smilkov@google.com (Daniel Smilkov)
|
||||
*/
|
||||
|
||||
/**
|
||||
* The MIT License (MIT)
|
||||
* Copyright (c) 2015 Andrej Karpathy
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
import {SPNode, SPTree} from './sptree';
|
||||
|
||||
type AugmSPNode = SPNode&{numCells: number, yCell: number[], rCell: number};
|
||||
|
||||
/**
|
||||
* Barnes-hut approximation level. Higher means more approximation and faster
|
||||
* results. Recommended value mentioned in the paper is 0.8.
|
||||
*/
|
||||
const THETA = 0.8;
|
||||
|
||||
// Variables used for memorizing the second random number since running
|
||||
// gaussRandom() generates two random numbers at the cost of 1 atomic
|
||||
// computation. This optimization results in 2X speed-up of the generator.
|
||||
let return_v = false;
|
||||
let v_val = 0.0;
|
||||
|
||||
/** Returns a vector filled with zeros */
|
||||
function zerosArray(length: number): number[] {
|
||||
let result = new Array(length);
|
||||
for (let i = 0; i < length; ++i) {
|
||||
result[i] = 0;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** Returns the square euclidean distance between two vectors. */
|
||||
export function dist2(a: number[], b: number[]): number {
|
||||
if (a.length != b.length) {
|
||||
throw new Error('Vectors a and b must be of same length');
|
||||
}
|
||||
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
let diff = a[i] - b[i];
|
||||
result += diff * diff;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two 2D points. */
|
||||
export function dist2_2D(a: number[], b: number[]): number {
|
||||
let dX = a[0] - b[0];
|
||||
let dY = a[1] - b[1];
|
||||
return dX * dX + dY * dY;
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two 3D points. */
|
||||
export function dist2_3D(a: number[], b: number[]): number {
|
||||
let dX = a[0] - b[0];
|
||||
let dY = a[1] - b[1];
|
||||
let dZ = a[2] - b[2];
|
||||
return dX * dX + dY * dY + dZ * dZ;
|
||||
}
|
||||
|
||||
function gaussRandom(rng: () => number): number {
|
||||
if (return_v) {
|
||||
return_v = false;
|
||||
return v_val;
|
||||
}
|
||||
let u = 2 * rng() - 1;
|
||||
let v = 2 * rng() - 1;
|
||||
let r = u * u + v * v;
|
||||
if (r == 0 || r > 1) {
|
||||
return gaussRandom(rng);
|
||||
}
|
||||
let c = Math.sqrt(-2 * Math.log(r) / r);
|
||||
v_val = v * c; // cache this for next function call for efficiency
|
||||
return_v = true;
|
||||
return u * c;
|
||||
};
|
||||
|
||||
// return random normal number
|
||||
function randn(rng: () => number, mu: number, std: number) {
|
||||
return mu + gaussRandom(rng) * std;
|
||||
};
|
||||
|
||||
// utilitity that creates contiguous vector of zeros of size n
|
||||
function zeros(n: number): Float64Array {
|
||||
return new Float64Array(n);
|
||||
};
|
||||
|
||||
// utility that returns a matrix filled with random numbers
|
||||
// generated by the provided generator.
|
||||
function randnMatrix(n: number, d: number, rng: () => number) {
|
||||
let nd = n * d;
|
||||
let x = zeros(nd);
|
||||
for (let i = 0; i < nd; ++i) {
|
||||
x[i] = randn(rng, 0.0, 1E-4);
|
||||
}
|
||||
return x;
|
||||
};
|
||||
|
||||
// utility that returns a matrix filled with the provided value.
|
||||
function arrayofs(n: number, d: number, val: number) {
|
||||
let x: number[][] = [];
|
||||
for (let i = 0; i < n; ++i) {
|
||||
let row = new Array(d);
|
||||
for (let j = 0; j < d; ++j) {
|
||||
row[j] = val;
|
||||
}
|
||||
x.push(row);
|
||||
}
|
||||
return x;
|
||||
};
|
||||
|
||||
// compute (p_{i|j} + p_{j|i})/(2n)
|
||||
function nearest2P(
|
||||
nearest: {index: number, dist: number}[][], perplexity: number,
|
||||
tol: number) {
|
||||
let N = nearest.length;
|
||||
let Htarget = Math.log(perplexity); // target entropy of distribution
|
||||
let P = zeros(N * N); // temporary probability matrix
|
||||
let K = nearest[0].length;
|
||||
let pRow: number[] = new Array(K); // pij[].
|
||||
|
||||
for (let i = 0; i < N; ++i) {
|
||||
let neighbors = nearest[i];
|
||||
let betaMin = -Infinity;
|
||||
let betaMax = Infinity;
|
||||
let beta = 1; // initial value of precision
|
||||
let maxTries = 50;
|
||||
|
||||
// perform binary search to find a suitable precision beta
|
||||
// so that the entropy of the distribution is appropriate
|
||||
let numTries = 0;
|
||||
while (true) {
|
||||
// compute entropy and kernel row with beta precision
|
||||
let psum = 0.0;
|
||||
for (let k = 0; k < neighbors.length; ++k) {
|
||||
let neighbor = neighbors[k];
|
||||
let pij = (i == neighbor.index) ? 0 : Math.exp(-neighbor.dist * beta);
|
||||
pRow[k] = pij;
|
||||
psum += pij;
|
||||
}
|
||||
// normalize p and compute entropy
|
||||
let Hhere = 0.0;
|
||||
for (let k = 0; k < pRow.length; ++k) {
|
||||
pRow[k] /= psum;
|
||||
let pij = pRow[k];
|
||||
if (pij > 1E-7) {
|
||||
Hhere -= pij * Math.log(pij);
|
||||
};
|
||||
}
|
||||
|
||||
// adjust beta based on result
|
||||
if (Hhere > Htarget) {
|
||||
// entropy was too high (distribution too diffuse)
|
||||
// so we need to increase the precision for more peaky distribution
|
||||
betaMin = beta; // move up the bounds
|
||||
if (betaMax === Infinity) {
|
||||
beta = beta * 2;
|
||||
} else {
|
||||
beta = (beta + betaMax) / 2;
|
||||
}
|
||||
|
||||
} else {
|
||||
// converse case. make distrubtion less peaky
|
||||
betaMax = beta;
|
||||
if (betaMin === -Infinity) {
|
||||
beta = beta / 2;
|
||||
} else {
|
||||
beta = (beta + betaMin) / 2;
|
||||
}
|
||||
}
|
||||
numTries++;
|
||||
// stopping conditions: too many tries or got a good precision
|
||||
if (numTries >= maxTries || Math.abs(Hhere - Htarget) < tol) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// copy over the final prow to P at row i
|
||||
for (let k = 0; k < pRow.length; ++k) {
|
||||
let pij = pRow[k];
|
||||
let j = neighbors[k].index;
|
||||
P[i * N + j] = pij;
|
||||
}
|
||||
} // end loop over examples i
|
||||
|
||||
// symmetrize P and normalize it to sum to 1 over all ij
|
||||
let N2 = N * 2;
|
||||
for (let i = 0; i < N; ++i) {
|
||||
for (let j = i + 1; j < N; ++j) {
|
||||
let i_j = i * N + j;
|
||||
let j_i = j * N + i;
|
||||
let value = (P[i_j] + P[j_i]) / N2;
|
||||
P[i_j] = value;
|
||||
P[j_i] = value;
|
||||
}
|
||||
}
|
||||
return P;
|
||||
};
|
||||
|
||||
// helper function
|
||||
function sign(x: number) {
|
||||
return x > 0 ? 1 : x < 0 ? -1 : 0;
|
||||
}
|
||||
|
||||
export interface TSNEOptions {
|
||||
/** How many dimensions. */
|
||||
dim: number;
|
||||
/** Roughly how many neighbors each point influences. */
|
||||
perplexity?: number;
|
||||
/** Learning rate. */
|
||||
epsilon?: number;
|
||||
/** A random number generator. */
|
||||
rng?: () => number;
|
||||
}
|
||||
|
||||
export class TSNE {
|
||||
private perplexity: number;
|
||||
private epsilon: number;
|
||||
/** Random generator */
|
||||
private rng: () => number;
|
||||
private iter = 0;
|
||||
private Y: Float64Array;
|
||||
private N: number;
|
||||
private P: Float64Array;
|
||||
private gains: number[][];
|
||||
private ystep: number[][];
|
||||
private nearest: {index: number, dist: number}[][];
|
||||
private dim: number;
|
||||
private dist2: (a: number[], b: number[]) => number;
|
||||
|
||||
constructor(opt: TSNEOptions) {
|
||||
opt = opt || {dim: 2};
|
||||
this.perplexity = opt.perplexity || 30;
|
||||
this.epsilon = opt.epsilon || 10;
|
||||
this.rng = opt.rng || Math.random;
|
||||
this.dim = opt.dim;
|
||||
if (opt.dim == 2) {
|
||||
this.dist2 = dist2_2D;
|
||||
} else if (opt.dim == 3) {
|
||||
this.dist2 = dist2_3D;
|
||||
} else {
|
||||
this.dist2 = dist2;
|
||||
}
|
||||
}
|
||||
|
||||
// this function takes a fattened distance matrix and creates
|
||||
// matrix P from them.
|
||||
// D is assumed to be provided as an array of size N^2.
|
||||
initDataDist(nearest: {index: number, dist: number}[][]) {
|
||||
let N = nearest.length;
|
||||
this.nearest = nearest;
|
||||
this.P = nearest2P(nearest, this.perplexity, 1E-4);
|
||||
this.N = N;
|
||||
this.initSolution(); // refresh this
|
||||
}
|
||||
|
||||
// (re)initializes the solution to random
|
||||
initSolution() {
|
||||
// generate random solution to t-SNE
|
||||
this.Y = randnMatrix(this.N, this.dim, this.rng); // the solution
|
||||
this.gains = arrayofs(this.N, this.dim, 1.0); // step gains
|
||||
// to accelerate progress in unchanging directions
|
||||
this.ystep = arrayofs(this.N, this.dim, 0.0); // momentum accumulator
|
||||
this.iter = 0;
|
||||
}
|
||||
|
||||
// return pointer to current solution
|
||||
getSolution() { return this.Y; }
|
||||
|
||||
// perform a single step of optimization to improve the embedding
|
||||
step() {
|
||||
this.iter += 1;
|
||||
let N = this.N;
|
||||
|
||||
let grad = this.costGrad(this.Y); // evaluate gradient
|
||||
|
||||
// perform gradient step
|
||||
let ymean = zerosArray(this.dim);
|
||||
for (let i = 0; i < N; ++i) {
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
let gid = grad[i][d];
|
||||
let sid = this.ystep[i][d];
|
||||
let gainid = this.gains[i][d];
|
||||
|
||||
// compute gain update
|
||||
let newgain = sign(gid) === sign(sid) ? gainid * 0.8 : gainid + 0.2;
|
||||
if (newgain < 0.01) {
|
||||
newgain = 0.01; // clamp
|
||||
}
|
||||
this.gains[i][d] = newgain; // store for next turn
|
||||
|
||||
// compute momentum step direction
|
||||
let momval = this.iter < 250 ? 0.5 : 0.8;
|
||||
let newsid = momval * sid - this.epsilon * newgain * grad[i][d];
|
||||
this.ystep[i][d] = newsid; // remember the step we took
|
||||
|
||||
// step!
|
||||
let i_d = i * this.dim + d;
|
||||
this.Y[i_d] += newsid;
|
||||
ymean[d] += this.Y[i_d]; // accumulate mean so that we
|
||||
// can center later
|
||||
}
|
||||
}
|
||||
|
||||
// reproject Y to be zero mean
|
||||
for (let i = 0; i < N; ++i) {
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
this.Y[i * this.dim + d] -= ymean[d] / N;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// return cost and gradient, given an arrangement
|
||||
costGrad(Y: Float64Array): number[][] {
|
||||
let N = this.N;
|
||||
let P = this.P;
|
||||
|
||||
// Trick that helps with local optima.
|
||||
let alpha = this.iter < 100 ? 4 : 1;
|
||||
|
||||
// Make data for the SP tree.
|
||||
let points: number[][] = new Array(N); // (x, y)[]
|
||||
for (let i = 0; i < N; ++i) {
|
||||
let iTimesD = i * this.dim;
|
||||
let row = new Array(this.dim);
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
row[d] = Y[iTimesD + d];
|
||||
}
|
||||
points[i] = row;
|
||||
}
|
||||
|
||||
// Make a tree.
|
||||
let tree = new SPTree(points, 1);
|
||||
let root = tree.root as AugmSPNode;
|
||||
// Annotate the tree.
|
||||
|
||||
let annotateTree =
|
||||
(node: AugmSPNode): {numCells: number, yCell: number[]} => {
|
||||
let numCells = node.points ? node.points.length : 0;
|
||||
if (node.children == null) {
|
||||
// Update the current node and tell the parent.
|
||||
node.numCells = numCells;
|
||||
// TODO(smilkov): yCell should be average across all points.
|
||||
node.yCell = node.points[0];
|
||||
return {numCells, yCell: node.yCell};
|
||||
}
|
||||
// TODO(smilkov): yCell should be average across all points.
|
||||
let yCell =
|
||||
node.points ? node.points[0].slice() : zerosArray(this.dim);
|
||||
for (let i = 0; i < node.children.length; ++i) {
|
||||
let child = node.children[i];
|
||||
if (child == null) {
|
||||
continue;
|
||||
}
|
||||
let result = annotateTree(child as AugmSPNode);
|
||||
numCells += result.numCells;
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
yCell[d] += result.yCell[d];
|
||||
}
|
||||
}
|
||||
// Update the node and tell the parent.
|
||||
node.numCells = numCells;
|
||||
node.yCell = yCell.map(v => v / numCells);
|
||||
return {numCells, yCell};
|
||||
};
|
||||
|
||||
// Augment the tree with more info.
|
||||
annotateTree(root);
|
||||
tree.visit((node: AugmSPNode, low: number[], high: number[]) => {
|
||||
node.rCell = high[0] - low[0];
|
||||
return false;
|
||||
});
|
||||
// compute current Q distribution, unnormalized first
|
||||
let grad: number[][] = [];
|
||||
let Z = 0;
|
||||
let forces: [number[], number[]][] = new Array(N);
|
||||
for (let i = 0; i < N; ++i) {
|
||||
let pointI = points[i];
|
||||
// Compute the positive forces for the i-th node.
|
||||
let Fpos = zerosArray(this.dim);
|
||||
let neighbors = this.nearest[i];
|
||||
for (let k = 0; k < neighbors.length; ++k) {
|
||||
let j = neighbors[k].index;
|
||||
let pij = P[i * N + j];
|
||||
let pointJ = points[j];
|
||||
let squaredDistItoJ = this.dist2(pointI, pointJ);
|
||||
let premult = pij / (1 + squaredDistItoJ);
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
Fpos[d] += premult * (pointI[d] - pointJ[d]);
|
||||
}
|
||||
}
|
||||
// Compute the negative forces for the i-th node.
|
||||
let FnegZ = zerosArray(this.dim);
|
||||
tree.visit((node: AugmSPNode) => {
|
||||
let squaredDistToCell = this.dist2(pointI, node.yCell);
|
||||
// Squared distance from point i to cell.
|
||||
if (node.children == null ||
|
||||
(node.rCell / Math.sqrt(squaredDistToCell) < THETA)) {
|
||||
let qijZ = 1 / (1 + squaredDistToCell);
|
||||
let dZ = node.numCells * qijZ;
|
||||
Z += dZ;
|
||||
dZ *= qijZ;
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
FnegZ[d] += dZ * (pointI[d] - node.yCell[d]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (node.points != null) {
|
||||
// TODO(smilkov): Iterate over all points.
|
||||
let squaredDistToPoint = this.dist2(pointI, node.points[0]);
|
||||
let qijZ = 1 / (1 + squaredDistToPoint);
|
||||
Z += qijZ;
|
||||
qijZ *= qijZ;
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
FnegZ[d] += qijZ * (pointI[d] - node.points[0][d]);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}, true);
|
||||
forces[i] = [Fpos, FnegZ];
|
||||
}
|
||||
// Normalize the negative forces and compute the gradient.
|
||||
for (let i = 0; i < N; ++i) {
|
||||
let [FPos, FNegZ] = forces[i];
|
||||
let gsum = new Array(this.dim);
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
gsum[d] = 4 * (alpha * FPos[d] - FNegZ[d] / Z);
|
||||
}
|
||||
grad.push(gsum);
|
||||
}
|
||||
return grad;
|
||||
}
|
||||
}
|
@ -1,324 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {runAsyncTask} from './async';
|
||||
import {TSNE} from './bh_tsne';
|
||||
import * as knn from './knn';
|
||||
import * as scatter from './scatter';
|
||||
import {shuffle} from './util';
|
||||
import * as vector from './vector';
|
||||
|
||||
|
||||
/**
|
||||
* A DataSource is our ground truth data. The original parsed data should never
|
||||
* be modified, only copied out.
|
||||
*/
|
||||
export class DataSource {
|
||||
originalDataSet: DataSet;
|
||||
spriteImage: HTMLImageElement;
|
||||
metadata: DatasetMetadata;
|
||||
|
||||
/** A shallow-copy constructor. */
|
||||
makeShallowCopy(): DataSource {
|
||||
let copy = new DataSource();
|
||||
copy.originalDataSet = this.originalDataSet;
|
||||
copy.spriteImage = this.spriteImage;
|
||||
copy.metadata = this.metadata;
|
||||
return copy;
|
||||
}
|
||||
|
||||
/** Returns a new dataset. */
|
||||
getDataSet(subset?: number[]): DataSet {
|
||||
let pointsSubset = subset ?
|
||||
subset.map(i => this.originalDataSet.points[i]) :
|
||||
this.originalDataSet.points;
|
||||
return new DataSet(pointsSubset);
|
||||
}
|
||||
}
|
||||
|
||||
export interface DataPoint extends scatter.DataPoint {
|
||||
/** The point in the original space. */
|
||||
vector: number[];
|
||||
|
||||
/*
|
||||
* Metadata for each point. Each metadata is a set of key/value pairs
|
||||
* where the value can be a string or a number.
|
||||
*/
|
||||
metadata: {[key: string]: number | string};
|
||||
|
||||
/** This is where the calculated projections space are cached */
|
||||
projections: {[key: string]: number};
|
||||
}
|
||||
|
||||
/** Checks to see if the browser supports webgl. */
|
||||
function hasWebGLSupport(): boolean {
|
||||
try {
|
||||
let c = document.createElement('canvas');
|
||||
let gl = c.getContext('webgl') || c.getContext('experimental-webgl');
|
||||
return gl != null && typeof weblas !== 'undefined';
|
||||
} catch (e) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const WEBGL_SUPPORT = hasWebGLSupport();
|
||||
const MAX_TSNE_ITERS = 500;
|
||||
/**
|
||||
* Sampling is used when computing expensive operations such as PCA, or T-SNE.
|
||||
*/
|
||||
const SAMPLE_SIZE = 10000;
|
||||
/** Number of dimensions to sample when doing approximate PCA. */
|
||||
const PCA_SAMPLE_DIM = 100;
|
||||
/** Number of pca components to compute. */
|
||||
const NUM_PCA_COMPONENTS = 10;
|
||||
/** Reserved metadata attribute used for trace information. */
|
||||
const TRACE_METADATA_ATTR = '__next__';
|
||||
|
||||
/**
|
||||
* Dataset contains a DataPoints array that should be treated as immutable. This
|
||||
* acts as a working subset of the original data, with cached properties
|
||||
* from computationally expensive operations. Because creating a subset
|
||||
* requires normalizing and shifting the vector space, we make a copy of the
|
||||
* data so we can still always create new subsets based on the original data.
|
||||
*/
|
||||
export class DataSet implements scatter.DataSet {
|
||||
points: DataPoint[];
|
||||
traces: scatter.DataTrace[];
|
||||
|
||||
sampledDataIndices: number[] = [];
|
||||
|
||||
/**
|
||||
* This keeps a list of all current projections so you can easily test to see
|
||||
* if it's been calculated already.
|
||||
*/
|
||||
projections = d3.set();
|
||||
nearest: knn.NearestEntry[][];
|
||||
nearestK: number;
|
||||
tSNEShouldStop = true;
|
||||
dim = [0, 0];
|
||||
private tsne: TSNE;
|
||||
|
||||
/**
|
||||
* Creates a new Dataset by copying out data from an array of datapoints.
|
||||
* We make a copy because we have to modify the vectors by normalizing them.
|
||||
*/
|
||||
constructor(points: DataPoint[]) {
|
||||
// Keep a list of indices seen so we don't compute traces for a given
|
||||
// point twice.
|
||||
let indicesSeen: boolean[] = [];
|
||||
|
||||
this.points = [];
|
||||
points.forEach(dp => {
|
||||
this.points.push({
|
||||
metadata: dp.metadata,
|
||||
dataSourceIndex: dp.dataSourceIndex,
|
||||
vector: dp.vector.slice(),
|
||||
projectedPoint: {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0,
|
||||
},
|
||||
projections: {}
|
||||
});
|
||||
indicesSeen.push(false);
|
||||
});
|
||||
|
||||
this.sampledDataIndices =
|
||||
shuffle(d3.range(this.points.length)).slice(0, SAMPLE_SIZE);
|
||||
this.traces = this.computeTraces(points, indicesSeen);
|
||||
|
||||
this.normalize();
|
||||
this.dim = [this.points.length, this.points[0].vector.length];
|
||||
}
|
||||
|
||||
private computeTraces(points: DataPoint[], indicesSeen: boolean[]) {
|
||||
// Compute traces.
|
||||
let indexToTrace: {[index: number]: scatter.DataTrace} = {};
|
||||
let traces: scatter.DataTrace[] = [];
|
||||
for (let i = 0; i < points.length; i++) {
|
||||
if (indicesSeen[i]) {
|
||||
continue;
|
||||
}
|
||||
indicesSeen[i] = true;
|
||||
|
||||
// Ignore points without a trace attribute.
|
||||
let next = points[i].metadata[TRACE_METADATA_ATTR];
|
||||
if (next == null || next === '') {
|
||||
continue;
|
||||
}
|
||||
if (next in indexToTrace) {
|
||||
let existingTrace = indexToTrace[+next];
|
||||
// Pushing at the beginning of the array.
|
||||
existingTrace.pointIndices.unshift(i);
|
||||
indexToTrace[i] = existingTrace;
|
||||
continue;
|
||||
}
|
||||
// The current point is pointing to a new/unseen trace.
|
||||
let newTrace: scatter.DataTrace = {pointIndices: []};
|
||||
indexToTrace[i] = newTrace;
|
||||
traces.push(newTrace);
|
||||
let currentIndex = i;
|
||||
while (points[currentIndex]) {
|
||||
newTrace.pointIndices.push(currentIndex);
|
||||
let next = points[currentIndex].metadata[TRACE_METADATA_ATTR];
|
||||
if (next != null && next !== '') {
|
||||
indicesSeen[+next] = true;
|
||||
currentIndex = +next;
|
||||
} else {
|
||||
currentIndex = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return traces;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the centroid, shifts all points to that centroid,
|
||||
* then makes them all unit norm.
|
||||
*/
|
||||
private normalize() {
|
||||
// Compute the centroid of all data points.
|
||||
let centroid =
|
||||
vector.centroid(this.points, () => true, a => a.vector).centroid;
|
||||
if (centroid == null) {
|
||||
throw Error('centroid should not be null');
|
||||
}
|
||||
// Shift all points by the centroid and make them unit norm.
|
||||
for (let id = 0; id < this.points.length; ++id) {
|
||||
let dataPoint = this.points[id];
|
||||
dataPoint.vector = vector.sub(dataPoint.vector, centroid);
|
||||
vector.unit(dataPoint.vector);
|
||||
}
|
||||
}
|
||||
|
||||
/** Projects the dataset onto a given vector and caches the result. */
|
||||
projectLinear(dir: vector.Vector, label: string) {
|
||||
this.projections.add(label);
|
||||
this.points.forEach(dataPoint => {
|
||||
dataPoint.projections[label] = vector.dot(dataPoint.vector, dir);
|
||||
});
|
||||
}
|
||||
|
||||
/** Projects the dataset along the top 10 principal components. */
|
||||
projectPCA(): Promise<void> {
|
||||
if (this.projections.has('pca-0')) {
|
||||
return Promise.resolve<void>();
|
||||
}
|
||||
return runAsyncTask('Computing PCA...', () => {
|
||||
// Approximate pca vectors by sampling the dimensions.
|
||||
let numDim = Math.min(this.points[0].vector.length, PCA_SAMPLE_DIM);
|
||||
let reducedDimData =
|
||||
vector.projectRandom(this.points.map(d => d.vector), numDim);
|
||||
let sigma = numeric.div(
|
||||
numeric.dot(numeric.transpose(reducedDimData), reducedDimData),
|
||||
reducedDimData.length);
|
||||
let U: any;
|
||||
U = numeric.svd(sigma).U;
|
||||
let pcaVectors = reducedDimData.map(vector => {
|
||||
let newV: number[] = [];
|
||||
for (let d = 0; d < NUM_PCA_COMPONENTS; d++) {
|
||||
let dot = 0;
|
||||
for (let i = 0; i < vector.length; i++) {
|
||||
dot += vector[i] * U[i][d];
|
||||
}
|
||||
newV.push(dot);
|
||||
}
|
||||
return newV;
|
||||
});
|
||||
for (let j = 0; j < NUM_PCA_COMPONENTS; j++) {
|
||||
let label = 'pca-' + j;
|
||||
this.projections.add(label);
|
||||
this.points.forEach(
|
||||
(d, i) => { d.projections[label] = pcaVectors[i][j]; });
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/** Runs tsne on the data. */
|
||||
projectTSNE(
|
||||
perplexity: number, learningRate: number, tsneDim: number,
|
||||
stepCallback: (iter: number) => void) {
|
||||
let k = Math.floor(3 * perplexity);
|
||||
let opt = {epsilon: learningRate, perplexity: perplexity, dim: tsneDim};
|
||||
this.tsne = new TSNE(opt);
|
||||
this.tSNEShouldStop = false;
|
||||
let iter = 0;
|
||||
|
||||
let step = () => {
|
||||
if (this.tSNEShouldStop || iter > MAX_TSNE_ITERS) {
|
||||
stepCallback(null);
|
||||
return;
|
||||
}
|
||||
this.tsne.step();
|
||||
let result = this.tsne.getSolution();
|
||||
this.sampledDataIndices.forEach((index, i) => {
|
||||
let dataPoint = this.points[index];
|
||||
|
||||
dataPoint.projections['tsne-0'] = result[i * tsneDim + 0];
|
||||
dataPoint.projections['tsne-1'] = result[i * tsneDim + 1];
|
||||
if (tsneDim === 3) {
|
||||
dataPoint.projections['tsne-2'] = result[i * tsneDim + 2];
|
||||
}
|
||||
});
|
||||
iter++;
|
||||
stepCallback(iter);
|
||||
requestAnimationFrame(step);
|
||||
};
|
||||
|
||||
// Nearest neighbors calculations.
|
||||
let knnComputation: Promise<knn.NearestEntry[][]>;
|
||||
|
||||
if (this.nearest != null && k === this.nearestK) {
|
||||
// We found the nearest neighbors before and will reuse them.
|
||||
knnComputation = Promise.resolve(this.nearest);
|
||||
} else {
|
||||
let sampledData = this.sampledDataIndices.map(i => this.points[i]);
|
||||
this.nearestK = k;
|
||||
knnComputation = WEBGL_SUPPORT ?
|
||||
knn.findKNNGPUCosine(sampledData, k, (d => d.vector)) :
|
||||
knn.findKNN(
|
||||
sampledData, k, (d => d.vector),
|
||||
(a, b, limit) => vector.cosDistNorm(a, b));
|
||||
}
|
||||
knnComputation.then(nearest => {
|
||||
this.nearest = nearest;
|
||||
runAsyncTask('Initializing T-SNE...', () => {
|
||||
this.tsne.initDataDist(this.nearest);
|
||||
}).then(step);
|
||||
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
stopTSNE() { this.tSNEShouldStop = true; }
|
||||
}
|
||||
|
||||
export interface DatasetMetadata {
|
||||
/**
|
||||
* Metadata for an associated image sprite. The sprite should be a matrix
|
||||
* of smaller images, filled in a row-by-row order.
|
||||
*
|
||||
* E.g. the image for the first data point should be in the upper-left
|
||||
* corner, and to the right of it should be the image of the second data
|
||||
* point.
|
||||
*/
|
||||
image?: {
|
||||
/** The file path pointing to the sprite image. */
|
||||
sprite_fpath: string;
|
||||
/** The dimensions of the image for a single data point. */
|
||||
single_image_dim: [number, number];
|
||||
};
|
||||
}
|
@ -1,66 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {DataPoint, DataSet} from './data';
|
||||
|
||||
|
||||
/**
|
||||
* Helper method that makes a list of points given an array of
|
||||
* trace indexes.
|
||||
*
|
||||
* @param traces The i-th entry holds the 'next' attribute for the i-th point.
|
||||
*/
|
||||
function makePointsWithTraces(traces: number[]) {
|
||||
let nextAttr = '__next__';
|
||||
let points: DataPoint[] = [];
|
||||
traces.forEach((t, i) => {
|
||||
let metadata: {[key: string]: any} = {};
|
||||
metadata[nextAttr] = t >= 0 ? t : null;
|
||||
points.push({
|
||||
vector: [],
|
||||
metadata: metadata,
|
||||
projections: {},
|
||||
projectedPoint: null,
|
||||
dataSourceIndex: i
|
||||
});
|
||||
});
|
||||
return points;
|
||||
}
|
||||
|
||||
const assert = chai.assert;
|
||||
|
||||
it('Simple forward pointing traces', () => {
|
||||
// The input is: 0->2, 1->None, 2->3, 3->None. This should return
|
||||
// one trace 0->2->3.
|
||||
let points = makePointsWithTraces([2, -1, 3, -1]);
|
||||
let dataset = new DataSet(points);
|
||||
assert.equal(dataset.traces.length, 1);
|
||||
assert.deepEqual(dataset.traces[0].pointIndices, [0, 2, 3]);
|
||||
});
|
||||
|
||||
it('No traces', () => {
|
||||
let points = makePointsWithTraces([-1, -1, -1, -1]);
|
||||
let dataset = new DataSet(points);
|
||||
assert.equal(dataset.traces.length, 0);
|
||||
});
|
||||
|
||||
it('A trace that goes backwards and forward in the array', () => {
|
||||
// The input is: 0->2, 1->0, 2->nothing, 3->1. This should return
|
||||
// one trace 3->1->0->2.
|
||||
let points = makePointsWithTraces([2, 0, -1, 1]);
|
||||
let dataset = new DataSet(points);
|
||||
assert.equal(dataset.traces.length, 1);
|
||||
assert.deepEqual(dataset.traces[0].pointIndices, [3, 1, 0, 2]);
|
||||
});
|
@ -1,73 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<!--
|
||||
@license
|
||||
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<html>
|
||||
<head>
|
||||
<link rel="icon" type="image/png" href="favicon.png">
|
||||
<!-- Polyfill for non-Chrome browsers -->
|
||||
<script src="../../webcomponentsjs/webcomponents-lite.js"></script>
|
||||
<link rel="import" href="../vz-projector.html">
|
||||
<link rel="import" href="../../paper-icon-button/paper-icon-button.html">
|
||||
<!-- TODO(jart): Refactor js_binary rule into ../ rather than ../../ -->
|
||||
<script src="../../bundle.js"></script>
|
||||
<title>Embedding projector - visualization of high-dimensional data</title>
|
||||
<style>
|
||||
html {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
body {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
font-family: "Roboto", "Helvetica", "Arial", sans-serif;
|
||||
margin: 0;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
#appbar {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: space-between;
|
||||
padding: 0 24px;
|
||||
height: 60px;
|
||||
color: white;
|
||||
background: black;
|
||||
}
|
||||
|
||||
#appbar .logo {
|
||||
font-size: 18px;
|
||||
font-weight: 300;
|
||||
}
|
||||
|
||||
.icons {
|
||||
display: flex;
|
||||
}
|
||||
|
||||
.icons a {
|
||||
color: white;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="appbar">
|
||||
<div>Embedding Projector</div>
|
||||
</div>
|
||||
<vz-projector></vz-projector>
|
||||
</body>
|
||||
</html>
|
@ -1,25 +0,0 @@
|
||||
// TODO(smilkov): Split into weblas.d.ts and numeric.d.ts and write
|
||||
// typings for numeric.
|
||||
interface Tensor {
|
||||
new(size: [number, number], data: Float32Array);
|
||||
transfer(): Float32Array;
|
||||
delete(): void;
|
||||
}
|
||||
|
||||
interface Weblas {
|
||||
sgemm(M: number, N: number, K: number, alpha: number,
|
||||
A: Float32Array, B: Float32Array, beta: number, C: Float32Array):
|
||||
Float32Array;
|
||||
pipeline: {
|
||||
Tensor: Tensor;
|
||||
sgemm(alpha: number, A: Tensor, B: Tensor, beta: number,
|
||||
C: Tensor): Tensor;
|
||||
};
|
||||
util: {
|
||||
transpose(M: number, N: number, data: Float32Array): Tensor;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
declare let numeric: any;
|
||||
declare let weblas: Weblas;
|
@ -1,146 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
/** Min key heap. */
|
||||
export type HeapItem<T> = {
|
||||
key: number,
|
||||
value: T
|
||||
};
|
||||
|
||||
/**
|
||||
* Min-heap data structure. Provides O(1) for peek, returning the smallest key.
|
||||
*/
|
||||
// TODO(jart): Rename to Heap and use Comparator.
|
||||
export class MinHeap<T> {
|
||||
private arr: HeapItem<T>[] = [];
|
||||
|
||||
/** Push an element with the provided key. */
|
||||
push(key: number, value: T): void {
|
||||
this.arr.push({key, value});
|
||||
this.bubbleUp(this.arr.length - 1);
|
||||
}
|
||||
|
||||
/** Pop the element with the smallest key. */
|
||||
pop(): HeapItem<T> {
|
||||
if (this.arr.length === 0) {
|
||||
throw new Error('pop() called on empty binary heap');
|
||||
}
|
||||
let item = this.arr[0];
|
||||
let last = this.arr.length - 1;
|
||||
this.arr[0] = this.arr[last];
|
||||
this.arr.pop();
|
||||
if (last > 0) {
|
||||
this.bubbleDown(0);
|
||||
}
|
||||
return item;
|
||||
};
|
||||
|
||||
/** Returns, but doesn't remove the element with the smallest key */
|
||||
peek(): HeapItem<T> { return this.arr[0]; }
|
||||
|
||||
/**
|
||||
* Pops the element with the smallest key and at the same time
|
||||
* adds the newly provided element. This is faster than calling
|
||||
* pop() and push() separately.
|
||||
*/
|
||||
popPush(key: number, value: T): HeapItem<T> {
|
||||
if (this.arr.length === 0) {
|
||||
throw new Error('pop() called on empty binary heap');
|
||||
}
|
||||
let item = this.arr[0];
|
||||
this.arr[0] = {key, value};
|
||||
if (this.arr.length > 0) {
|
||||
this.bubbleDown(0);
|
||||
}
|
||||
return item;
|
||||
}
|
||||
|
||||
/** Returns the number of elements in the heap. */
|
||||
size(): number { return this.arr.length; }
|
||||
|
||||
/** Returns all the items in the heap. */
|
||||
items(): HeapItem<T>[] { return this.arr; }
|
||||
|
||||
private swap(a: number, b: number) {
|
||||
let temp = this.arr[a];
|
||||
this.arr[a] = this.arr[b];
|
||||
this.arr[b] = temp;
|
||||
}
|
||||
|
||||
private bubbleDown(pos: number) {
|
||||
let left = (pos << 1) + 1;
|
||||
let right = left + 1;
|
||||
let largest = pos;
|
||||
if (left < this.arr.length && this.arr[left].key < this.arr[largest].key) {
|
||||
largest = left;
|
||||
}
|
||||
if (right < this.arr.length &&
|
||||
this.arr[right].key < this.arr[largest].key) {
|
||||
largest = right;
|
||||
}
|
||||
if (largest != pos) {
|
||||
this.swap(largest, pos);
|
||||
this.bubbleDown(largest);
|
||||
}
|
||||
}
|
||||
|
||||
private bubbleUp(pos: number) {
|
||||
if (pos <= 0) {
|
||||
return;
|
||||
}
|
||||
let parent = ((pos - 1) >> 1);
|
||||
if (this.arr[pos].key < this.arr[parent].key) {
|
||||
this.swap(pos, parent);
|
||||
this.bubbleUp(parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** List that keeps the K elements with the smallest keys. */
|
||||
export class KMin<T> {
|
||||
private k: number;
|
||||
private maxHeap = new MinHeap<T>();
|
||||
|
||||
/** Constructs a new k-min data structure with the provided k. */
|
||||
constructor(k: number) { this.k = k; }
|
||||
|
||||
/** Adds an element to the list. */
|
||||
add(key: number, value: T) {
|
||||
if (this.maxHeap.size() < this.k) {
|
||||
this.maxHeap.push(-key, value);
|
||||
return;
|
||||
}
|
||||
let largest = this.maxHeap.peek();
|
||||
// If the new element is smaller, replace the largest with the new element.
|
||||
if (key < -largest.key) {
|
||||
this.maxHeap.popPush(-key, value);
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns the k items with the smallest keys. */
|
||||
getMinKItems(): T[] {
|
||||
let items = this.maxHeap.items();
|
||||
items.sort((a, b) => b.key - a.key);
|
||||
return items.map(a => a.value);
|
||||
}
|
||||
|
||||
/** Returns the size of the list. */
|
||||
getSize(): number { return this.maxHeap.size(); }
|
||||
|
||||
/** Returns the largest key in the list. */
|
||||
getLargestKey(): number {
|
||||
return this.maxHeap.size() == 0 ? null : -this.maxHeap.peek().key;
|
||||
}
|
||||
}
|
@ -1,223 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {runAsyncTask} from './async';
|
||||
import {KMin} from './heap';
|
||||
import * as vector from './vector';
|
||||
|
||||
export type NearestEntry = {
|
||||
index: number,
|
||||
dist: number
|
||||
};
|
||||
|
||||
/**
|
||||
* Optimal size for the height of the matrix when doing computation on the GPU
|
||||
* using WebGL. This was found experimentally.
|
||||
*
|
||||
* This also guarantees that for computing pair-wise distance for up to 10K
|
||||
* vectors, no more than 40MB will be allocated in the GPU. Without the
|
||||
* allocation limit, we can freeze the graphics of the whole OS.
|
||||
*/
|
||||
const OPTIMAL_GPU_BLOCK_SIZE = 512;
|
||||
|
||||
/**
|
||||
* Returns the K nearest neighbors for each vector where the distance
|
||||
* computation is done on the GPU (WebGL) using cosine distance.
|
||||
*
|
||||
* @param dataPoints List of data points, where each data point holds an
|
||||
* n-dimensional vector.
|
||||
* @param k Number of nearest neighbors to find.
|
||||
* @param accessor A method that returns the vector, given the data point.
|
||||
*/
|
||||
export function findKNNGPUCosine<T>(
|
||||
dataPoints: T[], k: number,
|
||||
accessor: (dataPoint: T) => number[]): Promise<NearestEntry[][]> {
|
||||
let N = dataPoints.length;
|
||||
let dim = accessor(dataPoints[0]).length;
|
||||
|
||||
// The goal is to compute a large matrix multiplication A*A.T where A is of
|
||||
// size NxD and A.T is its transpose. This results in a NxN matrix which
|
||||
// could be too big to store on the GPU memory. To avoid memory overflow, we
|
||||
// compute multiple A*partial_A.T where partial_A is of size BxD (B is much
|
||||
// smaller than N). This results in storing only NxB size matrices on the GPU
|
||||
// at a given time.
|
||||
|
||||
// A*A.T will give us NxN matrix holding the cosine distance between every
|
||||
// pair of points, which we sort using KMin data structure to obtain the
|
||||
// K nearest neighbors for each point.
|
||||
let typedArray = vector.toTypedArray(dataPoints, accessor);
|
||||
let bigMatrix = new weblas.pipeline.Tensor([N, dim], typedArray);
|
||||
let nearest: NearestEntry[][] = new Array(N);
|
||||
let numPieces = Math.ceil(N / OPTIMAL_GPU_BLOCK_SIZE);
|
||||
let M = Math.floor(N / numPieces);
|
||||
let modulo = N % numPieces;
|
||||
let offset = 0;
|
||||
let progress = 0;
|
||||
let progressDiff = 1 / (2 * numPieces);
|
||||
let piece = 0;
|
||||
|
||||
function step(resolve: (result: NearestEntry[][]) => void) {
|
||||
let progressMsg =
|
||||
'Finding nearest neighbors: ' + (progress * 100).toFixed() + '%';
|
||||
runAsyncTask(progressMsg, () => {
|
||||
let B = piece < modulo ? M + 1 : M;
|
||||
let typedB = new Float32Array(B * dim);
|
||||
for (let i = 0; i < B; ++i) {
|
||||
let vector = accessor(dataPoints[offset + i]);
|
||||
for (let d = 0; d < dim; ++d) {
|
||||
typedB[i * dim + d] = vector[d];
|
||||
}
|
||||
}
|
||||
let partialMatrix = new weblas.pipeline.Tensor([B, dim], typedB);
|
||||
// Result is N x B matrix.
|
||||
let result =
|
||||
weblas.pipeline.sgemm(1, bigMatrix, partialMatrix, null, null);
|
||||
let partial = result.transfer();
|
||||
partialMatrix.delete();
|
||||
result.delete();
|
||||
progress += progressDiff;
|
||||
for (let i = 0; i < B; i++) {
|
||||
let kMin = new KMin<NearestEntry>(k);
|
||||
let iReal = offset + i;
|
||||
for (let j = 0; j < N; j++) {
|
||||
if (j === iReal) {
|
||||
continue;
|
||||
}
|
||||
let cosDist = 1 - partial[j * B + i]; // [j, i];
|
||||
kMin.add(cosDist, {index: j, dist: cosDist});
|
||||
}
|
||||
nearest[iReal] = kMin.getMinKItems();
|
||||
}
|
||||
progress += progressDiff;
|
||||
offset += B;
|
||||
piece++;
|
||||
}).then(() => {
|
||||
if (piece < numPieces) {
|
||||
step(resolve);
|
||||
} else {
|
||||
bigMatrix.delete();
|
||||
resolve(nearest);
|
||||
}
|
||||
});
|
||||
}
|
||||
return new Promise<NearestEntry[][]>(resolve => step(resolve));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the K nearest neighbors for each vector where the distance
|
||||
* computation is done on the CPU using a user-specified distance method.
|
||||
*
|
||||
* @param dataPoints List of data points, where each data point holds an
|
||||
* n-dimensional vector.
|
||||
* @param k Number of nearest neighbors to find.
|
||||
* @param accessor A method that returns the vector, given the data point.
|
||||
* @param dist Method that takes two vectors and a limit, and computes the
|
||||
* distance between two vectors, with the ability to stop early if the
|
||||
* distance is above the limit.
|
||||
*/
|
||||
export function findKNN<T>(
|
||||
dataPoints: T[], k: number, accessor: (dataPoint: T) => number[],
|
||||
dist: (a: number[], b: number[], limit: number) =>
|
||||
number): Promise<NearestEntry[][]> {
|
||||
return runAsyncTask<NearestEntry[][]>('Finding nearest neighbors...', () => {
|
||||
let N = dataPoints.length;
|
||||
let nearest: NearestEntry[][] = new Array(N);
|
||||
// Find the distances from node i.
|
||||
let kMin: KMin<NearestEntry>[] = new Array(N);
|
||||
for (let i = 0; i < N; i++) {
|
||||
kMin[i] = new KMin<NearestEntry>(k);
|
||||
}
|
||||
for (let i = 0; i < N; i++) {
|
||||
let a = accessor(dataPoints[i]);
|
||||
let kMinA = kMin[i];
|
||||
for (let j = i + 1; j < N; j++) {
|
||||
let kMinB = kMin[j];
|
||||
let limitI = kMinA.getSize() === k ?
|
||||
kMinA.getLargestKey() || Number.MAX_VALUE :
|
||||
Number.MAX_VALUE;
|
||||
let limitJ = kMinB.getSize() === k ?
|
||||
kMinB.getLargestKey() || Number.MAX_VALUE :
|
||||
Number.MAX_VALUE;
|
||||
let limit = Math.max(limitI, limitJ);
|
||||
let dist2ItoJ = dist(a, accessor(dataPoints[j]), limit);
|
||||
if (dist2ItoJ >= 0) {
|
||||
kMinA.add(dist2ItoJ, {index: j, dist: dist2ItoJ});
|
||||
kMinB.add(dist2ItoJ, {index: i, dist: dist2ItoJ});
|
||||
}
|
||||
}
|
||||
}
|
||||
for (let i = 0; i < N; i++) {
|
||||
nearest[i] = kMin[i].getMinKItems();
|
||||
}
|
||||
return nearest;
|
||||
});
|
||||
}
|
||||
|
||||
/** Calculates the minimum distance between a search point and a rectangle. */
|
||||
function minDist(
|
||||
point: [number, number], x1: number, y1: number, x2: number, y2: number) {
|
||||
let x = point[0];
|
||||
let y = point[1];
|
||||
let dx1 = x - x1;
|
||||
let dx2 = x - x2;
|
||||
let dy1 = y - y1;
|
||||
let dy2 = y - y2;
|
||||
|
||||
if (dx1 * dx2 <= 0) { // x is between x1 and x2
|
||||
if (dy1 * dy2 <= 0) { // (x,y) is inside the rectangle
|
||||
return 0; // return 0 as point is in rect
|
||||
}
|
||||
return Math.min(Math.abs(dy1), Math.abs(dy2));
|
||||
}
|
||||
if (dy1 * dy2 <= 0) { // y is between y1 and y2
|
||||
// We know it is already inside the rectangle
|
||||
return Math.min(Math.abs(dx1), Math.abs(dx2));
|
||||
}
|
||||
let corner: [number, number];
|
||||
if (x > x2) {
|
||||
// Upper-right vs lower-right.
|
||||
corner = y > y2 ? [x2, y2] : [x2, y1];
|
||||
} else {
|
||||
// Upper-left vs lower-left.
|
||||
corner = y > y2 ? [x1, y2] : [x1, y1];
|
||||
}
|
||||
return Math.sqrt(vector.dist22D([x, y], corner));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the nearest neighbors of a particular point.
|
||||
*
|
||||
* @param dataPoints List of data points.
|
||||
* @param pointIndex The index of the point we need the nearest neighbors of.
|
||||
* @param k Number of nearest neighbors to search for.
|
||||
* @param accessor Method that maps a data point => vector (array of numbers).
|
||||
* @param distance Method that takes two vectors and returns their distance.
|
||||
*/
|
||||
export function findKNNofPoint<T>(
|
||||
dataPoints: T[], pointIndex: number, k: number,
|
||||
accessor: (dataPoint: T) => number[],
|
||||
distance: (a: number[], b: number[]) => number) {
|
||||
let kMin = new KMin<NearestEntry>(k);
|
||||
let a = accessor(dataPoints[pointIndex]);
|
||||
for (let i = 0; i < dataPoints.length; ++i) {
|
||||
if (i == pointIndex) {
|
||||
continue;
|
||||
}
|
||||
let b = accessor(dataPoints[i]);
|
||||
let dist = distance(a, b);
|
||||
kMin.add(dist, {index: i, dist: dist});
|
||||
}
|
||||
return kMin.getMinKItems();
|
||||
}
|
@ -1,151 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
export interface BoundingBox {
|
||||
loX: number;
|
||||
loY: number;
|
||||
hiX: number;
|
||||
hiY: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Accelerates label placement by dividing the view into a uniform grid.
|
||||
* Labels only need to be tested for collision with other labels that overlap
|
||||
* the same grid cells. This is a fork of {@code amoeba.CollisionGrid}.
|
||||
*/
|
||||
export class CollisionGrid {
|
||||
private numHorizCells: number;
|
||||
private numVertCells: number;
|
||||
private grid: BoundingBox[][];
|
||||
private bound: BoundingBox;
|
||||
private cellWidth: number;
|
||||
private cellHeight: number;
|
||||
|
||||
/**
|
||||
* Constructs a new Collision grid.
|
||||
*
|
||||
* @param bound The bound of the grid. Labels out of bounds will be rejected.
|
||||
* @param cellWidth Width of a cell in the grid.
|
||||
* @param cellHeight Height of a cell in the grid.
|
||||
*/
|
||||
constructor(bound: BoundingBox, cellWidth: number, cellHeight: number) {
|
||||
/** The bound of the grid. Labels out of bounds will be rejected. */
|
||||
this.bound = bound;
|
||||
|
||||
/** Width of a cell in the grid. */
|
||||
this.cellWidth = cellWidth;
|
||||
|
||||
/** Height of a cell in the grid. */
|
||||
this.cellHeight = cellHeight;
|
||||
|
||||
/** Number of grid cells along the x axis. */
|
||||
this.numHorizCells = Math.ceil(this.boundWidth(bound) / cellWidth);
|
||||
|
||||
/** Number of grid cells along the y axis. */
|
||||
this.numVertCells = Math.ceil(this.boundHeight(bound) / cellHeight);
|
||||
|
||||
/**
|
||||
* The 2d grid (stored as a 1d array.) Each cell consists of an array of
|
||||
* BoundingBoxes for objects that are in the cell.
|
||||
*/
|
||||
this.grid = new Array(this.numHorizCells * this.numVertCells);
|
||||
}
|
||||
|
||||
private boundWidth(bound: BoundingBox) { return bound.hiX - bound.loX; }
|
||||
|
||||
private boundHeight(bound: BoundingBox) { return bound.hiY - bound.loY; }
|
||||
|
||||
private boundsIntersect(a: BoundingBox, b: BoundingBox) {
|
||||
return !(a.loX > b.hiX || a.loY > b.hiY || a.hiX < b.loX || a.hiY < b.loY);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if a given bounding box has any conflicts in the grid and inserts it
|
||||
* if none are found.
|
||||
*
|
||||
* @param bound The bound to insert.
|
||||
* @param justTest If true, just test if it conflicts, without inserting.
|
||||
* @return True if the bound was successfully inserted; false if it
|
||||
* could not be inserted due to a conflict.
|
||||
*/
|
||||
insert(bound: BoundingBox, justTest = false): boolean {
|
||||
// Reject if the label is out of bounds.
|
||||
if (bound.loX < this.bound.loX || bound.hiX > this.bound.hiX ||
|
||||
bound.loY < this.bound.loY || bound.hiY > this.bound.hiY) {
|
||||
return false;
|
||||
}
|
||||
|
||||
let minCellX = this.getCellX(bound.loX);
|
||||
let maxCellX = this.getCellX(bound.hiX);
|
||||
let minCellY = this.getCellY(bound.loY);
|
||||
let maxCellY = this.getCellY(bound.hiY);
|
||||
|
||||
// Check all overlapped cells to verify that we can insert.
|
||||
let baseIdx = minCellY * this.numHorizCells + minCellX;
|
||||
let idx = baseIdx;
|
||||
for (let j = minCellY; j <= maxCellY; j++) {
|
||||
for (let i = minCellX; i <= maxCellX; i++) {
|
||||
let cell = this.grid[idx++];
|
||||
if (cell) {
|
||||
for (let k = 0; k < cell.length; k++) {
|
||||
if (this.boundsIntersect(bound, cell[k])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
idx += this.numHorizCells - (maxCellX - minCellX + 1);
|
||||
}
|
||||
|
||||
if (justTest) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Insert into the overlapped cells.
|
||||
idx = baseIdx;
|
||||
for (let j = minCellY; j <= maxCellY; j++) {
|
||||
for (let i = minCellX; i <= maxCellX; i++) {
|
||||
if (!this.grid[idx]) {
|
||||
this.grid[idx] = [bound];
|
||||
} else {
|
||||
this.grid[idx].push(bound);
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
idx += this.numHorizCells - (maxCellX - minCellX + 1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the x index of the grid cell where the given x coordinate falls.
|
||||
*
|
||||
* @param x the coordinate, in world space.
|
||||
* @return the x index of the cell.
|
||||
*/
|
||||
private getCellX(x: number) {
|
||||
return Math.floor((x - this.bound.loX) / this.cellWidth);
|
||||
};
|
||||
|
||||
/**
|
||||
* Returns the y index of the grid cell where the given y coordinate falls.
|
||||
*
|
||||
* @param y the coordinate, in world space.
|
||||
* @return the y index of the cell.
|
||||
*/
|
||||
private getCellY(y: number) {
|
||||
return Math.floor((y - this.bound.loY) / this.cellHeight);
|
||||
};
|
||||
}
|
@ -1,135 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
export interface Point3D {
|
||||
/** Original x coordinate. */
|
||||
x: number;
|
||||
/** Original y coordinate. */
|
||||
y: number;
|
||||
/** Original z coordinate. */
|
||||
z: number;
|
||||
}
|
||||
;
|
||||
|
||||
/** The spacial data of points and lines that will be shown in the projector. */
|
||||
export interface DataSet {
|
||||
points: DataPoint[];
|
||||
traces: DataTrace[];
|
||||
}
|
||||
|
||||
/**
|
||||
* Points in 3D space that will be used in the projector. If the projector is
|
||||
* in 2D mode, the Z coordinate of the point will be 0.
|
||||
*/
|
||||
export interface DataPoint {
|
||||
projectedPoint: Point3D;
|
||||
/** index of the trace, used for highlighting on click */
|
||||
traceIndex?: number;
|
||||
/** index in the original data source */
|
||||
dataSourceIndex: number;
|
||||
}
|
||||
|
||||
/** A single collection of points which make up a trace through space. */
|
||||
export interface DataTrace {
|
||||
/** Indices into the DataPoints array in the Data object. */
|
||||
pointIndices: number[];
|
||||
}
|
||||
|
||||
export type OnHoverListener = (index: number) => void;
|
||||
export type OnSelectionListener = (indexes: number[]) => void;
|
||||
|
||||
/** Supported modes of interaction. */
|
||||
export enum Mode {
|
||||
SELECT,
|
||||
SEARCH,
|
||||
HOVER
|
||||
}
|
||||
|
||||
export interface Scatter {
|
||||
/** Sets the data for the scatter plot. */
|
||||
setDataSet(dataSet: DataSet, spriteImage?: HTMLImageElement): void;
|
||||
/** Called with each data point in order to get its color. */
|
||||
setColorAccessor(colorAccessor: ((index: number) => string)): void;
|
||||
/** Called with each data point in order to get its label. */
|
||||
setLabelAccessor(labelAccessor: ((index: number) => string)): void;
|
||||
/** Called with each data point in order to get its x coordinate. */
|
||||
setXAccessor(xAccessor: ((index: number) => number)): void;
|
||||
/** Called with each data point in order to get its y coordinate. */
|
||||
setYAccessor(yAccessor: ((index: number) => number)): void;
|
||||
/** Called with each data point in order to get its z coordinate. */
|
||||
setZAccessor(zAccessor: ((index: number) => number)): void;
|
||||
/** Sets the interaction mode (search, select or hover). */
|
||||
setMode(mode: Mode): void;
|
||||
/** Returns the interaction mode. */
|
||||
getMode(): Mode;
|
||||
/** Resets the zoom level to 1.*/
|
||||
resetZoom(): void;
|
||||
/**
|
||||
* Increases/decreases the zoom level.
|
||||
*
|
||||
* @param multiplier New zoom level = old zoom level * multiplier.
|
||||
*/
|
||||
zoomStep(multiplier: number): void;
|
||||
/**
|
||||
* Highlights the provided points.
|
||||
*
|
||||
* @param pointIndexes List of point indexes to highlight. If null,
|
||||
* un-highlights all the points.
|
||||
* @param stroke The stroke color used to highlight the point.
|
||||
* @param favorLabels Whether to favor plotting the labels of the
|
||||
* highlighted point. Default is false for all points.
|
||||
*/
|
||||
highlightPoints(
|
||||
pointIndexes: number[], highlightStroke?: (index: number) => string,
|
||||
favorLabels?: (index: number) => boolean): void;
|
||||
/** Whether to show labels or not. */
|
||||
showLabels(show: boolean): void;
|
||||
/** Toggle between day and night modes. */
|
||||
setDayNightMode(isNight: boolean): void;
|
||||
/** Show/hide tick labels. */
|
||||
showTickLabels(show: boolean): void;
|
||||
/** Whether to show axes or not. */
|
||||
showAxes(show: boolean): void;
|
||||
/** Sets the axis labels. */
|
||||
setAxisLabels(xLabel: string, yLabel: string): void;
|
||||
/**
|
||||
* Recreates the scene (demolishes all datastructures, etc.)
|
||||
*/
|
||||
recreateScene(): void;
|
||||
/**
|
||||
* Redraws the data. Should be called anytime the accessor method
|
||||
* for x and y coordinates changes, which means a new projection
|
||||
* exists and the scatter plot should repaint the points.
|
||||
*/
|
||||
update(): void;
|
||||
/**
|
||||
* Should be called to notify the scatter plot that the container
|
||||
* was resized and it should resize and redraw itself.
|
||||
*/
|
||||
resize(): void;
|
||||
/** Registers a listener that will be called when selects some points. */
|
||||
onSelection(listener: OnSelectionListener): void;
|
||||
/**
|
||||
* Registers a listener that will be called when the user hovers over
|
||||
* a point.
|
||||
*/
|
||||
onHover(listener: OnHoverListener): void;
|
||||
/**
|
||||
* Should emulate the same behavior as if the user clicked on the point.
|
||||
* This is used to trigger a click from an external event, such as
|
||||
* a search query.
|
||||
*/
|
||||
clickOnPoint(pointIndex: number): void;
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,189 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
/** How many elements can be stored in each node of the tree. */
|
||||
const NODE_CAPACITY = 4;
|
||||
|
||||
/** N-dimensional point. Usually 2D or 3D. */
|
||||
export type Point = number[];
|
||||
|
||||
export interface BBox {
|
||||
center: Point;
|
||||
halfDim: number;
|
||||
}
|
||||
|
||||
/** A node in a space-partitioning tree. */
|
||||
export interface SPNode {
|
||||
/** The children of this node. */
|
||||
children?: SPNode[];
|
||||
/** The bounding box of the region this node occupies. */
|
||||
box: BBox;
|
||||
/** One or more points this node has. */
|
||||
points?: Point[];
|
||||
}
|
||||
|
||||
/**
|
||||
* A Space-partitioning tree (https://en.wikipedia.org/wiki/Space_partitioning)
|
||||
* that recursively divides the space into regions of equal sizes. This data
|
||||
* structure can act both as a Quad tree and an Octree when the data is 2 or
|
||||
* 3 dimensional respectively. One usage is in t-SNE in order to do Barnes-Hut
|
||||
* approximation.
|
||||
*/
|
||||
export class SPTree {
|
||||
root: SPNode;
|
||||
|
||||
private masks: number[];
|
||||
private capacity: number;
|
||||
private dim: number;
|
||||
|
||||
/**
|
||||
* Constructs a new tree with the provided data.
|
||||
*
|
||||
* @param data List of n-dimensional data points.
|
||||
* @param capacity Number of data points to store in a single node.
|
||||
*/
|
||||
constructor(data: Point[], capacity = NODE_CAPACITY) {
|
||||
if (data.length < 1) {
|
||||
throw new Error('There should be at least 1 data point');
|
||||
}
|
||||
this.capacity = capacity;
|
||||
// Make a bounding box based on the extent of the data.
|
||||
this.dim = data[0].length;
|
||||
// Each node has 2^d children, where d is the dimension of the space.
|
||||
// Binary masks (e.g. 000, 001, ... 111 in 3D) are used to determine in
|
||||
// which child (e.g. quadron in 2D) the new point is going to be assigned.
|
||||
// For more details, see the insert() method and its comments.
|
||||
this.masks = new Array(Math.pow(2, this.dim));
|
||||
for (let d = 0; d < this.masks.length; ++d) {
|
||||
this.masks[d] = (1 << d);
|
||||
}
|
||||
let min: Point = new Array(this.dim);
|
||||
fillArray(min, Number.POSITIVE_INFINITY);
|
||||
let max: Point = new Array(this.dim);
|
||||
fillArray(max, Number.NEGATIVE_INFINITY);
|
||||
|
||||
for (let i = 0; i < data.length; ++i) {
|
||||
// For each dim get the min and max.
|
||||
// E.g. For 2-D, get the x_min, x_max, y_min, y_max.
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
min[d] = Math.min(min[d], data[i][d]);
|
||||
max[d] = Math.max(max[d], data[i][d]);
|
||||
}
|
||||
}
|
||||
// Create a bounding box with the center of the largest span.
|
||||
let center: Point = new Array(this.dim);
|
||||
let halfDim = 0;
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
let span = max[d] - min[d];
|
||||
center[d] = min[d] + span / 2;
|
||||
halfDim = Math.max(halfDim, span / 2);
|
||||
}
|
||||
this.root = {box: {center: center, halfDim: halfDim}};
|
||||
for (let i = 0; i < data.length; ++i) {
|
||||
this.insert(this.root, data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Visits every node in the tree. Each node can store 1 or more points,
|
||||
* depending on the node capacity provided in the constructor.
|
||||
*
|
||||
* @param accessor Method that takes the currently visited node, and the
|
||||
* low and high point of the region that this node occupies. E.g. in 2D,
|
||||
* the low and high points will be the lower-left corner and the upper-right
|
||||
* corner.
|
||||
*/
|
||||
visit(
|
||||
accessor: (node: SPNode, lowPoint: Point, highPoint: Point) => boolean,
|
||||
noBox = false) {
|
||||
this.visitNode(this.root, accessor, noBox);
|
||||
}
|
||||
|
||||
private visitNode(
|
||||
node: SPNode,
|
||||
accessor: (node: SPNode, lowPoint?: Point, highPoint?: Point) => boolean,
|
||||
noBox: boolean) {
|
||||
let skipChildren: boolean;
|
||||
if (noBox) {
|
||||
skipChildren = accessor(node);
|
||||
} else {
|
||||
let lowPoint = new Array(this.dim);
|
||||
let highPoint = new Array(this.dim);
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
lowPoint[d] = node.box.center[d] - node.box.halfDim;
|
||||
highPoint[d] = node.box.center[d] + node.box.halfDim;
|
||||
}
|
||||
skipChildren = accessor(node, lowPoint, highPoint);
|
||||
}
|
||||
if (!node.children || skipChildren) {
|
||||
return;
|
||||
}
|
||||
for (let i = 0; i < node.children.length; ++i) {
|
||||
let child = node.children[i];
|
||||
if (child) {
|
||||
this.visitNode(child, accessor, noBox);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private insert(node: SPNode, p: Point): boolean {
|
||||
if (node.points == null) {
|
||||
node.points = [];
|
||||
}
|
||||
// If there is space in this node, add the object here.
|
||||
if (node.points.length < this.capacity) {
|
||||
node.points.push(p);
|
||||
return true;
|
||||
}
|
||||
// Otherwise, subdivide and then add the point to whichever node will
|
||||
// accept it.
|
||||
if (node.children == null) {
|
||||
node.children = new Array(this.masks.length);
|
||||
}
|
||||
|
||||
// Decide which child will get the new point by constructing a D-bits binary
|
||||
// signature (D=3 for 3D) where the k-th bit is 1 if the point's k-th
|
||||
// coordinate is greater than the node's k-th coordinate, 0 otherwise.
|
||||
// Then the binary signature in decimal system gives us the index of the
|
||||
// child where the new point should be.
|
||||
let index = 0;
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
if (p[d] > node.box.center[d]) {
|
||||
index |= this.masks[d];
|
||||
}
|
||||
}
|
||||
if (node.children[index] == null) {
|
||||
this.makeChild(node, index);
|
||||
}
|
||||
this.insert(node.children[index], p);
|
||||
return true;
|
||||
}
|
||||
|
||||
private makeChild(node: SPNode, index: number): void {
|
||||
let oldC = node.box.center;
|
||||
let h = node.box.halfDim / 2;
|
||||
let newC: Point = new Array(this.dim);
|
||||
for (let d = 0; d < this.dim; ++d) {
|
||||
newC[d] = (index & (1 << d)) ? oldC[d] + h : oldC[d] - h;
|
||||
}
|
||||
node.children[index] = {box: {center: newC, halfDim: h}};
|
||||
}
|
||||
}
|
||||
|
||||
function fillArray<T>(arr: T[], value: T): void {
|
||||
for (let i = 0; i < arr.length; ++i) {
|
||||
arr[i] = value;
|
||||
}
|
||||
}
|
@ -1,106 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {SPTree} from './sptree';
|
||||
|
||||
const assert = chai.assert;
|
||||
|
||||
it('simple 2D data', () => {
|
||||
let data = [
|
||||
[0, 1],
|
||||
[1, 0],
|
||||
[1, 1],
|
||||
[0, 0],
|
||||
];
|
||||
let tree = new SPTree(data, 1);
|
||||
// Check that each point is within the bound.
|
||||
tree.visit((node, low, high) => {
|
||||
assert.equal(low.length, 2);
|
||||
assert.equal(high.length, 2);
|
||||
node.points.forEach(point => {
|
||||
assert.equal(point.length, 2);
|
||||
// Each point should be in the node's bounding box.
|
||||
assert.equal(
|
||||
point[0] >= low[0] && point[0] <= high[0] && point[1] >= low[1] &&
|
||||
point[1] <= high[1],
|
||||
true);
|
||||
});
|
||||
return false;
|
||||
});
|
||||
});
|
||||
|
||||
it('simple 3D data', () => {
|
||||
let data = [
|
||||
[0, 1, 0],
|
||||
[1, 0.4, 2],
|
||||
[1, 1, 3],
|
||||
[0, 0, 5],
|
||||
];
|
||||
let tree = new SPTree(data, 1);
|
||||
// Check that each point is within the bound.
|
||||
tree.visit((node, low, high) => {
|
||||
assert.equal(low.length, 3);
|
||||
assert.equal(high.length, 3);
|
||||
node.points.forEach(point => {
|
||||
assert.equal(point.length, 3);
|
||||
// Each point should be in the node's bounding box.
|
||||
assert.equal(
|
||||
point[0] >= low[0] && point[0] <= high[0] && point[1] >= low[1] &&
|
||||
point[1] <= high[1] && point[2] >= low[2] && point[2] <= high[2],
|
||||
true);
|
||||
});
|
||||
return false;
|
||||
});
|
||||
});
|
||||
|
||||
it('Only visit root', () => {
|
||||
let data = [
|
||||
[0, 1, 0],
|
||||
[1, 0.4, 2],
|
||||
[1, 1, 3],
|
||||
[0, 0, 5],
|
||||
];
|
||||
let tree = new SPTree(data, 1);
|
||||
let numVisits = 0;
|
||||
tree.visit((node, low, high) => {
|
||||
numVisits++;
|
||||
return true;
|
||||
});
|
||||
assert.equal(numVisits, 1);
|
||||
});
|
||||
|
||||
it('Search in random data', () => {
|
||||
let N = 10000;
|
||||
let data = new Array(N);
|
||||
for (let i = 0; i < N; i++) {
|
||||
data[i] = [Math.random(), Math.random()];
|
||||
}
|
||||
let tree = new SPTree(data, 1);
|
||||
let numVisits = 0;
|
||||
let query = data[Math.floor(Math.random() * N)];
|
||||
let found = false;
|
||||
tree.visit((node, low, high) => {
|
||||
numVisits++;
|
||||
if (node.points.length > 0 && node.points[0] === query) {
|
||||
found = true;
|
||||
return true;
|
||||
}
|
||||
let outOfBounds = query[0] < low[0] || query[0] > high[0] ||
|
||||
query[1] < low[1] || query[1] > high[1];
|
||||
return outOfBounds;
|
||||
});
|
||||
assert.equal(found, true);
|
||||
assert.isBelow(numVisits, N / 4);
|
||||
});
|
@ -1,43 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
/** Shuffles the array in-place in O(n) time using Fisher-Yates algorithm. */
|
||||
export function shuffle<T>(array: T[]): T[] {
|
||||
let m = array.length;
|
||||
let t: T;
|
||||
let i: number;
|
||||
|
||||
// While there remain elements to shuffle.
|
||||
while (m) {
|
||||
// Pick a remaining element
|
||||
i = Math.floor(Math.random() * m--);
|
||||
// And swap it with the current element.
|
||||
t = array[m];
|
||||
array[m] = array[i];
|
||||
array[i] = t;
|
||||
}
|
||||
return array;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assert that the condition is satisfied; if not, log user-specified message
|
||||
* to the console.
|
||||
*/
|
||||
export function assert(condition: boolean, message?: string) {
|
||||
if (!condition) {
|
||||
message = message || 'Assertion failed';
|
||||
throw new Error(message);
|
||||
}
|
||||
}
|
@ -1,270 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {assert} from './util';
|
||||
|
||||
|
||||
/**
|
||||
* @fileoverview Useful vector utilities.
|
||||
*/
|
||||
|
||||
export type Vector = number[];
|
||||
export type Point2D = [number, number];
|
||||
|
||||
/** Returns the dot product of two vectors. */
|
||||
export function dot(a: Vector, b: Vector): number {
|
||||
assert(a.length == b.length, 'Vectors a and b must be of same length');
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
result += a[i] * b[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Sums all the elements in the vector */
|
||||
export function sum(a: Vector): number {
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
result += a[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the sum of two vectors, i.e. a + b */
|
||||
export function add(a: Vector, b: Vector): Vector {
|
||||
assert(a.length == b.length, 'Vectors a and b must be of same length');
|
||||
let result = new Array(a.length);
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
result[i] = a[i] + b[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Subtracts vector b from vector a, i.e. returns a - b */
|
||||
export function sub(a: Vector, b: Vector): Vector {
|
||||
assert(a.length == b.length, 'Vectors a and b must be of same length');
|
||||
let result = new Array(a.length);
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
result[i] = a[i] - b[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the square norm of the vector */
|
||||
export function norm2(a: Vector): number {
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
result += a[i] * a[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the euclidean distance between two vectors. */
|
||||
export function dist(a: Vector, b: Vector): number {
|
||||
return Math.sqrt(dist2(a, b));
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two vectors. */
|
||||
export function dist2(a: Vector, b: Vector): number {
|
||||
assert(a.length == b.length, 'Vectors a and b must be of same length');
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
let diff = a[i] - b[i];
|
||||
result += diff * diff;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two 2D points. */
|
||||
export function dist2_2D(a: Vector, b: Vector): number {
|
||||
let dX = a[0] - b[0];
|
||||
let dY = a[1] - b[1];
|
||||
return dX * dX + dY * dY;
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two 3D points. */
|
||||
export function dist2_3D(a: Vector, b: Vector): number {
|
||||
let dX = a[0] - b[0];
|
||||
let dY = a[1] - b[1];
|
||||
let dZ = a[2] - b[2];
|
||||
return dX * dX + dY * dY + dZ * dZ;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the square euclidean distance between two vectors, with an early
|
||||
* exit (returns -1) if the distance is >= to the provided limit.
|
||||
*/
|
||||
export function dist2WithLimit(a: Vector, b: Vector, limit: number): number {
|
||||
assert(a.length == b.length, 'Vectors a and b must be of same length');
|
||||
let result = 0;
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
let diff = a[i] - b[i];
|
||||
result += diff * diff;
|
||||
if (result >= limit) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Returns the square euclidean distance between two 2D points. */
|
||||
export function dist22D(a: Point2D, b: Point2D): number {
|
||||
let dX = a[0] - b[0];
|
||||
let dY = a[1] - b[1];
|
||||
return dX * dX + dY * dY;
|
||||
}
|
||||
|
||||
/** Modifies the vector in-place to have unit norm. */
|
||||
export function unit(a: Vector): void {
|
||||
let norm = Math.sqrt(norm2(a));
|
||||
assert(norm >= 0, 'Norm of the vector must be > 0');
|
||||
for (let i = 0; i < a.length; ++i) {
|
||||
a[i] /= norm;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Projects the vectors to a lower dimension
|
||||
*
|
||||
* @param vectors Array of vectors to be projected.
|
||||
* @param newDim The resulting dimension of the vectors.
|
||||
*/
|
||||
export function projectRandom(vectors: number[][], newDim: number): number[][] {
|
||||
let dim = vectors[0].length;
|
||||
let N = vectors.length;
|
||||
let newVectors: number[][] = new Array(N);
|
||||
for (let i = 0; i < N; ++i) {
|
||||
newVectors[i] = new Array(newDim);
|
||||
}
|
||||
// Make nDim projections.
|
||||
for (let k = 0; k < newDim; ++k) {
|
||||
let randomVector = rn(dim);
|
||||
for (let i = 0; i < N; ++i) {
|
||||
newVectors[i][k] = dot(vectors[i], randomVector);
|
||||
}
|
||||
}
|
||||
return newVectors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Projects a vector onto a 2D plane specified by the two direction vectors.
|
||||
*/
|
||||
export function project2d(a: Vector, dir1: Vector, dir2: Vector): Point2D {
|
||||
return [dot(a, dir1), dot(a, dir2)];
|
||||
}
|
||||
|
||||
/** Returns a vector filled with zeros */
|
||||
export function zeros(length: number): Vector {
|
||||
let result = new Array(length);
|
||||
for (let i = 0; i < length; ++i) {
|
||||
result[i] = 0;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
export type Predicate<T> = (a: T) => boolean;
|
||||
|
||||
/**
|
||||
* Computes the centroid of the data points that pass the specified predicate.
|
||||
* If the provided data points are not vectors, an accessor function needs
|
||||
* to be provided.
|
||||
*/
|
||||
export function centroid<T>(
|
||||
dataPoints: T[], predicate: Predicate<T>,
|
||||
accessor?: (a: T) => Vector): {centroid: Vector, numMatches: number} {
|
||||
if (accessor == null) {
|
||||
accessor = (a: T) => <any>a;
|
||||
}
|
||||
assert(dataPoints.length >= 0, '`vectors` must be of length >= 1');
|
||||
let n = 0;
|
||||
let centroid = zeros(accessor(dataPoints[0]).length);
|
||||
for (let i = 0; i < dataPoints.length; ++i) {
|
||||
let dataPoint = dataPoints[i];
|
||||
if (!predicate(dataPoint)) {
|
||||
continue;
|
||||
}
|
||||
++n;
|
||||
let vector = accessor(dataPoint);
|
||||
for (let j = 0; j < centroid.length; ++j) {
|
||||
centroid[j] += vector[j];
|
||||
}
|
||||
}
|
||||
if (n == 0) {
|
||||
return {centroid: null, numMatches: 0};
|
||||
}
|
||||
for (let j = 0; j < centroid.length; ++j) {
|
||||
centroid[j] /= n;
|
||||
}
|
||||
return {centroid: centroid, numMatches: n};
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a vector of the specified size where each component is drawn from
|
||||
* a random (0, 1) gaussian distribution.
|
||||
*/
|
||||
export function rn(size: number): Vector {
|
||||
let normal = d3.random.normal();
|
||||
let result = new Array(size);
|
||||
for (let i = 0; i < size; ++i) {
|
||||
result[i] = normal();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the cosine distance ([0, 2]) between two vectors
|
||||
* that have been normalized to unit norm.
|
||||
*/
|
||||
export function cosDistNorm(a: Vector, b: Vector): number {
|
||||
return 1 - dot(a, b);
|
||||
}
|
||||
|
||||
/** Returns the cosine similarity ([-1, 1]) between two vectors. */
|
||||
export function cosSim(a: Vector, b: Vector): number {
|
||||
return dot(a, b) / Math.sqrt(norm2(a) * norm2(b));
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts list of vectors (matrix) into a 1-dimensional
|
||||
* typed array with row-first order.
|
||||
*/
|
||||
export function toTypedArray<T>(
|
||||
dataPoints: T[], accessor: (dataPoint: T) => number[]): Float32Array {
|
||||
let N = dataPoints.length;
|
||||
let dim = accessor(dataPoints[0]).length;
|
||||
let result = new Float32Array(N * dim);
|
||||
for (let i = 0; i < N; ++i) {
|
||||
let vector = accessor(dataPoints[i]);
|
||||
for (let d = 0; d < dim; ++d) {
|
||||
result[i * dim + d] = vector[d];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Transposes an RxC matrix represented as a flat typed array
|
||||
* into a CxR matrix, again represented as a flat typed array.
|
||||
*/
|
||||
export function transposeTypedArray(
|
||||
r: number, c: number, typedArray: Float32Array) {
|
||||
let result = new Float32Array(r * c);
|
||||
for (let i = 0; i < r; ++i) {
|
||||
for (let j = 0; j < c; ++j) {
|
||||
result[j * r + i] = typedArray[i * c + j];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
@ -1,144 +0,0 @@
|
||||
<!--
|
||||
@license
|
||||
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../paper-dropdown-menu/paper-dropdown-menu.html">
|
||||
<link rel="import" href="../paper-listbox/paper-listbox.html">
|
||||
<link rel="import" href="../paper-item/paper-item.html">
|
||||
|
||||
<dom-module id='vz-projector-data-loader'>
|
||||
<template>
|
||||
<style>
|
||||
:host {
|
||||
}
|
||||
|
||||
input[type=file] {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.file-name {
|
||||
margin-right: 10px;
|
||||
}
|
||||
|
||||
.dirs {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
margin-right: 10px;
|
||||
line-height: 20px;
|
||||
}
|
||||
|
||||
.dir {
|
||||
white-space: nowrap;
|
||||
overflow: hidden;
|
||||
text-overflow: ellipsis;
|
||||
}
|
||||
|
||||
paper-item {
|
||||
--paper-item-disabled: {
|
||||
border-bottom: 1px solid black;
|
||||
justify-content: center;
|
||||
font-size: 12px;
|
||||
line-height: normal;
|
||||
min-height: 0px;
|
||||
};
|
||||
}
|
||||
</style>
|
||||
|
||||
<!-- Server-mode UI -->
|
||||
<div class="server-controls" style="display:none;">
|
||||
<div class="dirs">
|
||||
<div class="dir">Checkpoint: <span id="checkpoint-file"></span></div>
|
||||
<div class="dir">Metadata: <span id="metadata-file"></span></div>
|
||||
</div>
|
||||
<!-- List of tensors in checkpoint -->
|
||||
<paper-dropdown-menu noink no-animations label="[[getNumTensorsLabel(tensorNames)]] found">
|
||||
<paper-listbox attr-for-selected="value" class="dropdown-content" selected="{{selectedTensor}}">
|
||||
<template is="dom-repeat" items="[[tensorNames]]">
|
||||
<paper-item style="justify-content: space-between;" value="[[item.name]]" label="[[item.name]]">
|
||||
[[item.name]]
|
||||
<span style="margin-left: 5px; color:gray; font-size: 12px;">[[item.shape.0]]x[[item.shape.1]]</span>
|
||||
</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
</paper-dropdown-menu>
|
||||
</div>
|
||||
|
||||
<!-- Standalone-mode UI -->
|
||||
<div class="standalone-controls" style="display:none;">
|
||||
|
||||
<!-- Upload buttons -->
|
||||
<div style="display: flex; justify-content: space-between;">
|
||||
<!-- Upload data -->
|
||||
<div>
|
||||
<button id="upload" title="Upload a TSV file" class="ink-button">Upload data</button>
|
||||
<span id="file-name" class="file-name dir"></span>
|
||||
<input type="file" id="file" name="file"/>
|
||||
</div>
|
||||
|
||||
<!-- Upload metadata -->
|
||||
<div>
|
||||
<button id="upload-metadata" title="Upload a TSV metadata file" class="ink-button">Upload Metadata</button>
|
||||
<span id="file-metadata-name" class="file-name dir"></span>
|
||||
<input type="file" id="file-metadata" name="file-metadata"/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Demo datasets -->
|
||||
<paper-dropdown-menu style="width: 100%" noink no-animations label="Select a demo dataset">
|
||||
<paper-listbox attr-for-selected="value" class="dropdown-content" selected="{{selectedDemo}}">
|
||||
<paper-item value="smartreply_full">SmartReply All</paper-item>
|
||||
<paper-item value="smartreply_5k">SmartReply 5K</paper-item>
|
||||
<paper-item value="wiki_5k">Glove Wiki 5K</paper-item>
|
||||
<paper-item value="wiki_10k">Glove Wiki 10K</paper-item>
|
||||
<paper-item value="wiki_40k">Glove Wiki 40K</paper-item>
|
||||
<paper-item value="mnist_10k">MNIST 10K</paper-item>
|
||||
<paper-item value="iris">Iris</paper-item>
|
||||
</paper-listbox>
|
||||
</paper-dropdown-menu>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- Label by -->
|
||||
<template is="dom-if" if="[[labelOptions.length]]">
|
||||
<paper-dropdown-menu style="width: 100%" noink no-animations label="Label by">
|
||||
<paper-listbox attr-for-selected="value" class="dropdown-content" selected="{{labelOption}}">
|
||||
<template is="dom-repeat" items="[[labelOptions]]">
|
||||
<paper-item style="justify-content: space-between;" value="[[item]]" label="[[item]]">
|
||||
[[item]]
|
||||
</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
</paper-dropdown-menu>
|
||||
</template>
|
||||
|
||||
<!-- Color by -->
|
||||
<template is="dom-if" if="[[colorOptions.length]]">
|
||||
<paper-dropdown-menu id="colorby" style="width: 100%" noink no-animations label="Color by">
|
||||
<paper-listbox attr-for-selected="value" class="dropdown-content" selected="{{colorOption}}">
|
||||
<template is="dom-repeat" items="[[colorOptions]]">
|
||||
<paper-item style="justify-content: space-between;" class$="[[getSeparatorClass(item.isSeparator)]]" value="[[item]]" label="[[item.name]]" disabled="[[item.isSeparator]]">
|
||||
[[item.name]]
|
||||
<span style="margin-left: 5px; color:gray; font-size: 12px;">[[item.desc]]</span>
|
||||
</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
</paper-dropdown-menu>
|
||||
</template>
|
||||
|
||||
<!-- Closing global template -->
|
||||
</template>
|
||||
</dom-module>
|
@ -1,500 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {runAsyncTask, updateMessage} from './async';
|
||||
import {DataPoint, DataSet, DatasetMetadata, DataSource} from './data';
|
||||
import {PolymerElement} from './vz-projector-util';
|
||||
|
||||
|
||||
/** Prefix added to the http requests when asking the server for data. */
|
||||
const DATA_URL = 'data';
|
||||
|
||||
type DemoDataset = {
|
||||
fpath: string; metadata_path?: string; metadata?: DatasetMetadata;
|
||||
};
|
||||
|
||||
type Metadata = {
|
||||
[key: string]: (number|string);
|
||||
};
|
||||
|
||||
/** List of compiled demo datasets for showing the capabilities of the tool. */
|
||||
const DEMO_DATASETS: {[name: string]: DemoDataset} = {
|
||||
'wiki_5k': {
|
||||
fpath: 'wiki_5000_50d_tensors.ssv',
|
||||
metadata_path: 'wiki_5000_50d_labels.ssv'
|
||||
},
|
||||
'wiki_10k': {
|
||||
fpath: 'wiki_10000_100d_tensors.ssv',
|
||||
metadata_path: 'wiki_10000_100d_labels.ssv'
|
||||
},
|
||||
'wiki_40k': {
|
||||
fpath: 'wiki_40000_100d_tensors.ssv',
|
||||
metadata_path: 'wiki_40000_100d_labels.ssv'
|
||||
},
|
||||
'smartreply_5k': {
|
||||
fpath: 'smartreply_5000_256d_tensors.tsv',
|
||||
metadata_path: 'smartreply_5000_256d_labels.tsv'
|
||||
},
|
||||
'smartreply_full': {
|
||||
fpath: 'smartreply_full_256d_tensors.tsv',
|
||||
metadata_path: 'smartreply_full_256d_labels.tsv'
|
||||
},
|
||||
'mnist_10k': {
|
||||
fpath: 'mnist_10k_784d_tensors.tsv',
|
||||
metadata_path: 'mnist_10k_784d_labels.tsv',
|
||||
metadata: {
|
||||
image:
|
||||
{sprite_fpath: 'mnist_10k_sprite.png', single_image_dim: [28, 28]}
|
||||
},
|
||||
},
|
||||
'iris': {fpath: 'iris_tensors.tsv', metadata_path: 'iris_labels.tsv'}
|
||||
};
|
||||
|
||||
/** Maximum number of colors supported in the color map. */
|
||||
const NUM_COLORS_COLOR_MAP = 20;
|
||||
|
||||
interface ServerInfo {
|
||||
tensors: {[name: string]: [number, number]};
|
||||
tensors_file: string;
|
||||
checkpoint_file: string;
|
||||
checkpoint_dir: string;
|
||||
metadata_file: string;
|
||||
}
|
||||
|
||||
let DataLoaderPolymer = PolymerElement({
|
||||
is: 'vz-projector-data-loader',
|
||||
properties: {
|
||||
dataSource: {
|
||||
type: Object, // DataSource
|
||||
notify: true
|
||||
},
|
||||
selectedDemo: {type: String, value: 'wiki_5k', notify: true},
|
||||
selectedTensor: {type: String, notify: true},
|
||||
labelOption: {type: String, notify: true},
|
||||
colorOption: {type: Object, notify: true},
|
||||
// Private.
|
||||
tensorNames: Array
|
||||
}
|
||||
});
|
||||
|
||||
export type ColorOption = {
|
||||
name: string; desc?: string; map?: (value: string | number) => string;
|
||||
isSeparator?: boolean;
|
||||
};
|
||||
|
||||
class DataLoader extends DataLoaderPolymer {
|
||||
dataSource: DataSource;
|
||||
selectedDemo: string;
|
||||
labelOption: string;
|
||||
labelOptions: string[];
|
||||
colorOption: ColorOption;
|
||||
colorOptions: ColorOption[];
|
||||
selectedTensor: string;
|
||||
tensorNames: {name: string, shape: number[]}[];
|
||||
|
||||
private dom: d3.Selection<any>;
|
||||
|
||||
ready() {
|
||||
this.dom = d3.select(this);
|
||||
if (this.dataSource) {
|
||||
// There is data already.
|
||||
return;
|
||||
}
|
||||
// Check to see if there is a server.
|
||||
d3.json(`${DATA_URL}/info`, (err, serverInfo) => {
|
||||
if (err) {
|
||||
// No server was found, thus operate in standalone mode.
|
||||
this.setupStandaloneMode();
|
||||
return;
|
||||
}
|
||||
// Server was found, thus show the checkpoint dir and the tensors.
|
||||
this.setupServerMode(serverInfo);
|
||||
});
|
||||
}
|
||||
|
||||
getSeparatorClass(isSeparator: boolean): string {
|
||||
return isSeparator ? 'separator' : null;
|
||||
}
|
||||
|
||||
private setupServerMode(info: ServerInfo) {
|
||||
// Display the server-mode controls.
|
||||
this.dom.select('.server-controls').style('display', null);
|
||||
this.dom.select('#checkpoint-file')
|
||||
.text(info.checkpoint_file)
|
||||
.attr('title', info.checkpoint_file);
|
||||
this.dom.select('#metadata-file')
|
||||
.text(info.metadata_file)
|
||||
.attr('title', info.metadata_file);
|
||||
|
||||
// Handle the list of checkpoint tensors.
|
||||
this.dom.on('selected-tensor-changed', () => {
|
||||
this.selectedTensorChanged(this.selectedTensor);
|
||||
});
|
||||
let names = Object.keys(info.tensors)
|
||||
.filter(name => {
|
||||
let shape = info.tensors[name];
|
||||
return shape.length == 2 && shape[0] > 1 && shape[1] > 1;
|
||||
})
|
||||
.sort((a, b) => info.tensors[b][0] - info.tensors[a][0]);
|
||||
this.tensorNames =
|
||||
names.map(name => { return {name, shape: info.tensors[name]}; });
|
||||
}
|
||||
|
||||
private updateMetadataUI(columnStats: ColumnStats[]) {
|
||||
// Label by options.
|
||||
let labelIndex = -1;
|
||||
this.labelOptions = columnStats.length > 1 ? columnStats.map((stats, i) => {
|
||||
// Make the default label by the first non-numeric column.
|
||||
if (!stats.isNumeric && labelIndex == -1) {
|
||||
labelIndex = i;
|
||||
}
|
||||
return stats.name;
|
||||
}) :
|
||||
['label'];
|
||||
this.labelOption = this.labelOptions[Math.max(0, labelIndex)];
|
||||
|
||||
// Color by options.
|
||||
let standardColorOption: ColorOption[] = [
|
||||
{name: 'No color map'},
|
||||
// TODO(smilkov): Implement this.
|
||||
//{name: 'Distance of neighbors',
|
||||
// desc: 'How far is each point from its neighbors'}
|
||||
];
|
||||
let metadataColorOption: ColorOption[] =
|
||||
columnStats
|
||||
.filter(stats => {
|
||||
return !stats.tooManyUniqueValues || stats.isNumeric;
|
||||
})
|
||||
.map(stats => {
|
||||
let map: (v: string|number) => string;
|
||||
if (!stats.tooManyUniqueValues) {
|
||||
let scale = d3.scale.category20();
|
||||
let range = scale.range();
|
||||
// Re-order the range.
|
||||
let newRange = range.map((color, i) => {
|
||||
let index = (i * 2) % (range.length - 1);
|
||||
if (index == 0) {
|
||||
index = range.length - 1;
|
||||
}
|
||||
return range[index];
|
||||
});
|
||||
scale.range(newRange).domain(stats.uniqueValues);
|
||||
map = scale;
|
||||
} else {
|
||||
map = d3.scale.linear<string>()
|
||||
.domain([stats.min, stats.max])
|
||||
.range(['white', 'black']);
|
||||
}
|
||||
let desc = stats.tooManyUniqueValues ?
|
||||
'gradient' :
|
||||
stats.uniqueValues.length + ' colors';
|
||||
return {name: stats.name, desc: desc, map: map};
|
||||
});
|
||||
if (metadataColorOption.length > 0) {
|
||||
// Add a separator line between built-in color maps
|
||||
// and those based on metadata columns.
|
||||
standardColorOption.push({name: 'Metadata', isSeparator: true});
|
||||
}
|
||||
this.colorOptions = standardColorOption.concat(metadataColorOption);
|
||||
this.colorOption = this.colorOptions[0];
|
||||
}
|
||||
|
||||
private setupStandaloneMode() {
|
||||
// Display the standalone UI controls.
|
||||
this.dom.select('.standalone-controls').style('display', null);
|
||||
|
||||
// Demo dataset dropdown
|
||||
let demoDatasetChanged = (demoDataSet: DemoDataset) => {
|
||||
if (demoDataSet == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
this.dom.selectAll('.file-name').style('display', 'none');
|
||||
let separator = demoDataSet.fpath.substr(-3) == 'tsv' ? '\t' : ' ';
|
||||
fetchDemoData(`${DATA_URL}/${demoDataSet.fpath}`, separator)
|
||||
.then(points => {
|
||||
|
||||
let p1 = demoDataSet.metadata_path ?
|
||||
new Promise<ColumnStats[]>((resolve, reject) => {
|
||||
updateMessage('Fetching metadata...');
|
||||
d3.text(
|
||||
`${DATA_URL}/${demoDataSet.metadata_path}`,
|
||||
(err: Error, rawMetadata: string) => {
|
||||
if (err) {
|
||||
console.error(err);
|
||||
reject(err);
|
||||
return;
|
||||
}
|
||||
resolve(parseAndMergeMetadata(rawMetadata, points));
|
||||
});
|
||||
}) :
|
||||
null;
|
||||
|
||||
let p2 = demoDataSet.metadata && demoDataSet.metadata.image ?
|
||||
fetchImage(
|
||||
`${DATA_URL}/${demoDataSet.metadata.image.sprite_fpath}`) :
|
||||
null;
|
||||
|
||||
Promise.all([p1, p2]).then(values => {
|
||||
this.updateMetadataUI(values[0]);
|
||||
let dataSource = new DataSource();
|
||||
dataSource.originalDataSet = new DataSet(points);
|
||||
dataSource.spriteImage = values[1];
|
||||
dataSource.metadata = demoDataSet.metadata;
|
||||
this.dataSource = dataSource;
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
this.dom.on('selected-demo-changed', () => {
|
||||
demoDatasetChanged(DEMO_DATASETS[this.selectedDemo]);
|
||||
});
|
||||
demoDatasetChanged(DEMO_DATASETS[this.selectedDemo]);
|
||||
|
||||
// Show and setup the upload button.
|
||||
let fileInput = this.dom.select('#file');
|
||||
fileInput.on('change', () => {
|
||||
let file: File = (<any>d3.event).target.files[0];
|
||||
this.dom.select('#file-name')
|
||||
.style('display', null)
|
||||
.text(file.name)
|
||||
.attr('title', file.name);
|
||||
// Clear out the value of the file chooser. This ensures that if the user
|
||||
// selects the same file, we'll re-read it.
|
||||
(<any>d3.event).target.value = '';
|
||||
// Clear the value of the datasets dropdown.
|
||||
this.selectedDemo = null;
|
||||
let fileReader = new FileReader();
|
||||
fileReader.onload = evt => {
|
||||
let str: string = (evt.target as any).result;
|
||||
parseTensors(str).then(data => {
|
||||
let dataSource = new DataSource();
|
||||
dataSource.originalDataSet = new DataSet(data);
|
||||
this.dataSource = dataSource;
|
||||
});
|
||||
};
|
||||
fileReader.readAsText(file);
|
||||
});
|
||||
|
||||
let uploadButton = this.dom.select('#upload');
|
||||
uploadButton.on(
|
||||
'click', () => { (<HTMLInputElement>fileInput.node()).click(); });
|
||||
|
||||
// Show and setup the upload metadata button.
|
||||
let fileMetadataInput = this.dom.select('#file-metadata');
|
||||
fileMetadataInput.on('change', () => {
|
||||
let file: File = (<any>d3.event).target.files[0];
|
||||
this.dom.select('#file-metadata-name')
|
||||
.style('display', null)
|
||||
.text(file.name)
|
||||
.attr('title', file.name);
|
||||
// Clear out the value of the file chooser. This ensures that if the user
|
||||
// selects the same file, we'll re-read it.
|
||||
(<any>d3.event).target.value = '';
|
||||
// Clear the value of the datasets dropdown.
|
||||
this.selectedDemo = null;
|
||||
let fileReader = new FileReader();
|
||||
fileReader.onload = evt => {
|
||||
let str: string = (evt.target as any).result;
|
||||
parseAndMergeMetadata(str, this.dataSource.originalDataSet.points)
|
||||
.then(columnStats => {
|
||||
this.updateMetadataUI(columnStats);
|
||||
// Must make a shallow copy, otherwise polymer will not
|
||||
// fire the 'data-changed' event, even if we explicitly
|
||||
// call this.fire().
|
||||
this.dataSource = this.dataSource.makeShallowCopy();
|
||||
});
|
||||
};
|
||||
fileReader.readAsText(file);
|
||||
});
|
||||
|
||||
let uploadMetadataButton = this.dom.select('#upload-metadata');
|
||||
uploadMetadataButton.on('click', () => {
|
||||
(<HTMLInputElement>fileMetadataInput.node()).click();
|
||||
});
|
||||
}
|
||||
|
||||
private selectedTensorChanged(name: string) {
|
||||
// Get the tensor.
|
||||
updateMessage('Fetching tensor values...');
|
||||
d3.text(`${DATA_URL}/tensor?name=${name}`, (err: Error, tsv: string) => {
|
||||
if (err) {
|
||||
console.error(err);
|
||||
return;
|
||||
}
|
||||
parseTensors(tsv).then(dataPoints => {
|
||||
updateMessage('Fetching metadata...');
|
||||
d3.text(`${DATA_URL}/metadata`, (err: Error, rawMetadata: string) => {
|
||||
if (err) {
|
||||
console.error(err);
|
||||
return;
|
||||
}
|
||||
parseAndMergeMetadata(rawMetadata, dataPoints).then(columnStats => {
|
||||
this.updateMetadataUI(columnStats);
|
||||
let dataSource = new DataSource();
|
||||
dataSource.originalDataSet = new DataSet(dataPoints);
|
||||
this.dataSource = dataSource;
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
private getNumTensorsLabel(tensorNames: string[]) {
|
||||
return tensorNames.length === 1 ? '1 tensor' :
|
||||
tensorNames.length + ' tensors';
|
||||
}
|
||||
}
|
||||
|
||||
function fetchImage(url: string): Promise<HTMLImageElement> {
|
||||
return new Promise<HTMLImageElement>((resolve, reject) => {
|
||||
let image = new Image();
|
||||
image.onload = () => resolve(image);
|
||||
image.onerror = (err) => reject(err);
|
||||
image.src = url;
|
||||
});
|
||||
}
|
||||
|
||||
/** Makes a network request for a delimited text file. */
|
||||
function fetchDemoData(url: string, separator: string): Promise<DataPoint[]> {
|
||||
return new Promise<DataPoint[]>((resolve, reject) => {
|
||||
updateMessage('Fetching tensors...');
|
||||
d3.text(url, (error: Error, dataString: string) => {
|
||||
if (error) {
|
||||
console.error(error);
|
||||
updateMessage('Error loading data.');
|
||||
reject(error);
|
||||
} else {
|
||||
parseTensors(dataString, separator).then(data => resolve(data));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
/** Parses a tsv text file. */
|
||||
function parseTensors(content: string, delim = '\t'): Promise<DataPoint[]> {
|
||||
let data: DataPoint[] = [];
|
||||
let numDim: number;
|
||||
return runAsyncTask('Parsing tensors...', () => {
|
||||
let lines = content.split('\n');
|
||||
lines.forEach(line => {
|
||||
line = line.trim();
|
||||
if (line == '') {
|
||||
return;
|
||||
}
|
||||
let row = line.split(delim);
|
||||
let dataPoint: DataPoint = {
|
||||
metadata: {},
|
||||
vector: null,
|
||||
dataSourceIndex: data.length,
|
||||
projections: null,
|
||||
projectedPoint: null
|
||||
};
|
||||
// If the first label is not a number, take it as the label.
|
||||
if (isNaN(row[0] as any) || numDim == row.length - 1) {
|
||||
dataPoint.metadata['label'] = row[0];
|
||||
dataPoint.vector = row.slice(1).map(Number);
|
||||
} else {
|
||||
dataPoint.vector = row.map(Number);
|
||||
}
|
||||
data.push(dataPoint);
|
||||
if (numDim == null) {
|
||||
numDim = dataPoint.vector.length;
|
||||
}
|
||||
if (numDim != dataPoint.vector.length) {
|
||||
updateMessage('Parsing failed. Vector dimensions do not match');
|
||||
throw Error('Parsing failed');
|
||||
}
|
||||
if (numDim <= 1) {
|
||||
updateMessage(
|
||||
'Parsing failed. Found a vector with only one dimension?');
|
||||
throw Error('Parsing failed');
|
||||
}
|
||||
});
|
||||
return data;
|
||||
});
|
||||
}
|
||||
|
||||
/** Statistics for a metadata column. */
|
||||
type ColumnStats = {
|
||||
name: string; isNumeric: boolean; tooManyUniqueValues: boolean;
|
||||
uniqueValues?: string[];
|
||||
min: number;
|
||||
max: number;
|
||||
};
|
||||
|
||||
function parseAndMergeMetadata(
|
||||
content: string, data: DataPoint[]): Promise<ColumnStats[]> {
|
||||
return runAsyncTask('Parsing metadata...', () => {
|
||||
let lines = content.split('\n').filter(line => line.trim().length > 0);
|
||||
let hasHeader = (lines.length - 1 == data.length);
|
||||
|
||||
// Dimension mismatch.
|
||||
if (lines.length != data.length && !hasHeader) {
|
||||
throw Error('Dimensions do not match');
|
||||
}
|
||||
|
||||
// If the first row doesn't contain metadata keys, we assume that the values
|
||||
// are labels.
|
||||
let columnNames: string[] = ['label'];
|
||||
if (hasHeader) {
|
||||
columnNames = lines[0].split('\t');
|
||||
lines = lines.slice(1);
|
||||
}
|
||||
let columnStats: ColumnStats[] = columnNames.map(name => {
|
||||
return {
|
||||
name: name,
|
||||
isNumeric: true,
|
||||
tooManyUniqueValues: false,
|
||||
min: Number.POSITIVE_INFINITY,
|
||||
max: Number.NEGATIVE_INFINITY
|
||||
};
|
||||
});
|
||||
let setOfValues = columnNames.map(() => d3.set());
|
||||
lines.forEach((line: string, i: number) => {
|
||||
let rowValues = line.split('\t');
|
||||
data[i].metadata = {};
|
||||
columnNames.forEach((name: string, colIndex: number) => {
|
||||
let value = rowValues[colIndex];
|
||||
let set = setOfValues[colIndex];
|
||||
let stats = columnStats[colIndex];
|
||||
data[i].metadata[name] = value;
|
||||
|
||||
// Update stats.
|
||||
if (!stats.tooManyUniqueValues) {
|
||||
set.add(value);
|
||||
if (set.size() > NUM_COLORS_COLOR_MAP) {
|
||||
stats.tooManyUniqueValues = true;
|
||||
}
|
||||
}
|
||||
if (isNaN(value as any)) {
|
||||
stats.isNumeric = false;
|
||||
} else {
|
||||
stats.min = Math.min(stats.min, +value);
|
||||
stats.max = Math.max(stats.max, +value);
|
||||
}
|
||||
});
|
||||
});
|
||||
columnStats.forEach((stats, colIndex) => {
|
||||
let set = setOfValues[colIndex];
|
||||
if (!stats.tooManyUniqueValues) {
|
||||
stats.uniqueValues = set.values();
|
||||
}
|
||||
});
|
||||
return columnStats;
|
||||
});
|
||||
}
|
||||
|
||||
document.registerElement(DataLoader.prototype.is, DataLoader);
|
@ -1,33 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
export type Spec = {
|
||||
is: string; properties: {
|
||||
[key: string]:
|
||||
(Function |
|
||||
{
|
||||
type: Function, value?: any;
|
||||
readonly?: boolean;
|
||||
notify?: boolean;
|
||||
observer?: string;
|
||||
})
|
||||
};
|
||||
};
|
||||
|
||||
export function PolymerElement(spec: Spec) {
|
||||
return Polymer.Class(spec as any) as{new (): PolymerHTMLElement};
|
||||
}
|
||||
|
||||
export interface PolymerHTMLElement extends HTMLElement, polymer.Base {}
|
@ -1,628 +0,0 @@
|
||||
<!--
|
||||
@license
|
||||
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../paper-toggle-button/paper-toggle-button.html">
|
||||
<link rel="import" href="../paper-listbox/paper-listbox.html">
|
||||
<link rel="import" href="../paper-item/paper-item.html">
|
||||
<link rel="import" href="../paper-checkbox/paper-checkbox.html">
|
||||
<link rel="import" href="vz-projector-data-loader.html">
|
||||
|
||||
<dom-module id='vz-projector'>
|
||||
<template>
|
||||
<style>
|
||||
|
||||
:host {
|
||||
display: flex;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
#container {
|
||||
display: flex;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.hidden {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
/* Main */
|
||||
|
||||
#main {
|
||||
position: relative;
|
||||
flex-grow: 2;
|
||||
}
|
||||
|
||||
#main .stage {
|
||||
position: relative;
|
||||
flex-grow: 2;
|
||||
}
|
||||
|
||||
#scatter {
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
right: 0;
|
||||
bottom: 0;
|
||||
}
|
||||
|
||||
#left-pane {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
min-width: 312px;
|
||||
width: 312px;
|
||||
border-right: 1px solid rgba(0, 0, 0, 0.1);
|
||||
background: #fafafa;
|
||||
}
|
||||
|
||||
#right-pane {
|
||||
min-width: 300px;
|
||||
width: 300px;
|
||||
border-left: 1px solid rgba(0, 0, 0, 0.1);
|
||||
background: #fafafa;
|
||||
}
|
||||
|
||||
.file-name {
|
||||
margin-right: 5px;
|
||||
}
|
||||
|
||||
.control label {
|
||||
font-size: 12px;
|
||||
color: rgba(0, 0, 0, 0.7);
|
||||
margin-top: 10px;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.control .info {
|
||||
display: block;
|
||||
font-size: 12px;
|
||||
color: rgba(0, 0, 0, 0.2);
|
||||
margin-bottom: 18px;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
.control input[type=text] {
|
||||
font-weight: 300;
|
||||
font-size: 16px;
|
||||
display: block;
|
||||
padding: 8px 0;
|
||||
margin: 0 0 8px 0;
|
||||
width: 100%;
|
||||
box-sizing: border-box;
|
||||
border: none;
|
||||
border-bottom: 1px solid rgba(0, 0, 0, 0.2);
|
||||
background: none;
|
||||
}
|
||||
|
||||
.slider {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
margin-bottom: 10px;
|
||||
justify-content: space-between;
|
||||
}
|
||||
|
||||
.slider span {
|
||||
width: 35px;
|
||||
text-align: right;
|
||||
}
|
||||
|
||||
.control input[type=text]:focus {
|
||||
outline: none;
|
||||
border-bottom: 1px solid rgba(0, 0, 0, 1);
|
||||
}
|
||||
|
||||
.control {
|
||||
display: inline-block;
|
||||
width: 45%;
|
||||
vertical-align: top;
|
||||
margin-right: 10px;
|
||||
overflow-x: hidden;
|
||||
}
|
||||
|
||||
.control.last {
|
||||
margin-right: 0;
|
||||
}
|
||||
|
||||
#wrapper-notify-msg {
|
||||
z-index: 1;
|
||||
position: fixed;
|
||||
top: 10px;
|
||||
width: 100%;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
}
|
||||
|
||||
#notify-msg {
|
||||
display: none;
|
||||
font-weight: 500;
|
||||
color: black;
|
||||
background-color: #FFF9C4;
|
||||
padding: 5px;
|
||||
border: 1px solid #FBC02D;
|
||||
}
|
||||
|
||||
.brush .extent {
|
||||
stroke: #fff;
|
||||
fill-opacity: .125;
|
||||
shape-rendering: crispEdges;
|
||||
}
|
||||
|
||||
.ink-panel-content {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.ink-panel-content.active {
|
||||
display: block;
|
||||
}
|
||||
|
||||
.nn-list .neighbor {
|
||||
font-size: 12px;
|
||||
margin-bottom: 6px;
|
||||
}
|
||||
|
||||
.nn-list .neighbor .value {
|
||||
float: right;
|
||||
color: #666;
|
||||
font-weight: 300;
|
||||
}
|
||||
|
||||
.nn-list .neighbor .bar {
|
||||
position: relative;
|
||||
border-top: 1px solid rgba(0, 0, 0, 0.15);
|
||||
margin: 2px 0;
|
||||
}
|
||||
|
||||
.nn-list .neighbor .bar .fill {
|
||||
position: absolute;
|
||||
top: -1px;
|
||||
border-top: 1px solid white;
|
||||
}
|
||||
|
||||
.nn-list .neighbor .tick {
|
||||
position: absolute;
|
||||
top: 0px;
|
||||
height: 3px;
|
||||
border-left: 1px solid rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
|
||||
.nn-list .neighbor-link:hover {
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.origin text {
|
||||
font-size: 12px;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.origin line {
|
||||
stroke: black;
|
||||
stroke-opacity: 0.2;
|
||||
}
|
||||
|
||||
/* Ink Framework */
|
||||
|
||||
/* - Buttons */
|
||||
.ink-button, ::shadow .ink-button {
|
||||
border: none;
|
||||
border-radius: 2px;
|
||||
font-size: 13px;
|
||||
padding: 10px;
|
||||
min-width: 100px;
|
||||
flex-shrink: 0;
|
||||
background: #e3e3e3;
|
||||
}
|
||||
|
||||
/* - Tabs */
|
||||
|
||||
.ink-tab-group {
|
||||
display: flex;
|
||||
justify-content: space-around;
|
||||
box-sizing: border-box;
|
||||
height: 100%;
|
||||
margin: 0 12px;
|
||||
}
|
||||
|
||||
.ink-tab-group .ink-tab {
|
||||
font-weight: 300;
|
||||
color: rgba(0, 0, 0, 0.5);
|
||||
text-align: center;
|
||||
text-transform: uppercase;
|
||||
line-height: 60px;
|
||||
cursor: pointer;
|
||||
padding: 0 12px;
|
||||
}
|
||||
|
||||
.ink-tab-group .ink-tab:hover {
|
||||
color: black;
|
||||
}
|
||||
|
||||
.ink-tab-group .ink-tab.active {
|
||||
font-weight: 500;
|
||||
color: black;
|
||||
border-bottom: 2px solid black;
|
||||
|
||||
}
|
||||
|
||||
/* - Panel */
|
||||
|
||||
.ink-panel {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
font-size: 14px;
|
||||
line-height: 1.45em;
|
||||
}
|
||||
|
||||
.ink-panel h4 {
|
||||
font-size: 14px;
|
||||
font-weight: 500;
|
||||
margin: 0;
|
||||
border-bottom: 1px solid #ddd;
|
||||
padding-bottom: 5px;
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
|
||||
.ink-panel-header {
|
||||
height: 60px;
|
||||
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
|
||||
}
|
||||
|
||||
.ink-panel-metadata-container span {
|
||||
font-size: 16px;
|
||||
}
|
||||
|
||||
.ink-panel-metadata {
|
||||
border-bottom: 1px solid #ccc;
|
||||
display: table;
|
||||
padding: 10px 0;
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
.ink-panel-metadata-row {
|
||||
display: table-row;
|
||||
}
|
||||
|
||||
.ink-panel-metadata-key {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.ink-panel-metadata-key,
|
||||
.ink-panel-metadata-value {
|
||||
display: table-cell;
|
||||
padding-right: 10px;
|
||||
}
|
||||
|
||||
.ink-panel-buttons {
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
|
||||
.ink-panel-content {
|
||||
padding: 24px;
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
.ink-panel-content .distance a {
|
||||
text-decoration: none;
|
||||
color: black;
|
||||
}
|
||||
|
||||
.ink-panel-content .distance a.selected {
|
||||
color: black;
|
||||
border-bottom: 2px solid black;
|
||||
}
|
||||
|
||||
.ink-panel-footer {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
border-top: solid 1px #eee;
|
||||
height: 60px;
|
||||
padding: 0 24px;
|
||||
color: rgba(0, 0, 0, 0.5);
|
||||
}
|
||||
|
||||
.ink-panel-content h3 {
|
||||
font-weight: 500;
|
||||
font-size: 14px;
|
||||
text-transform: uppercase;
|
||||
margin-top: 20px;
|
||||
margin-bottom: 5px;
|
||||
}
|
||||
|
||||
.ink-panel-header h3 {
|
||||
margin: 0;
|
||||
font-weight: 500;
|
||||
font-size: 14px;
|
||||
line-height: 60px;
|
||||
text-transform: uppercase;
|
||||
padding: 0 24px;
|
||||
}
|
||||
|
||||
/* - Menubar */
|
||||
|
||||
.ink-panel-menubar {
|
||||
position: relative;
|
||||
height: 60px;
|
||||
border-bottom: solid 1px #eee;
|
||||
padding: 0 24px;
|
||||
}
|
||||
|
||||
.ink-panel-menubar .material-icons {
|
||||
color: black;
|
||||
}
|
||||
|
||||
.ink-panel-menubar .menu-button {
|
||||
margin-right: 12px;
|
||||
cursor: pointer;
|
||||
line-height: 60px;
|
||||
border: none;
|
||||
background: none;
|
||||
font-size: 13px;
|
||||
font-weight: 200;
|
||||
padding: 0;
|
||||
margin: 0 20px 0 0;
|
||||
outline: none;
|
||||
color: #666;
|
||||
}
|
||||
|
||||
.ink-panel-menubar button .material-icons {
|
||||
position: relative;
|
||||
top: 7px;
|
||||
margin-right: 8px;
|
||||
color: #999;
|
||||
}
|
||||
|
||||
.ink-panel-menubar button.selected,
|
||||
.ink-panel-menubar button.selected .material-icons {
|
||||
color: #880E4F;
|
||||
}
|
||||
|
||||
.ink-panel-menubar .ink-fabs {
|
||||
position: absolute;
|
||||
right: 24px;
|
||||
top: 60px;
|
||||
z-index: 1;
|
||||
}
|
||||
|
||||
.ink-panel-menubar .ink-fabs .ink-fab {
|
||||
position: relative;
|
||||
top: -20px;
|
||||
width: 40px;
|
||||
height: 40px;
|
||||
border: 1px solid rgba(0, 0, 0, 0.02);
|
||||
border-radius: 50%;
|
||||
display: inline-block;
|
||||
background: white;
|
||||
margin-left: 8px;
|
||||
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.3);
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.ink-panel-menubar .ink-fabs .ink-fab .material-icons {
|
||||
margin: 0;
|
||||
display: block;
|
||||
line-height: 24px;
|
||||
position: absolute;
|
||||
top: calc(50% - 12px);
|
||||
left: calc(50% - 12px);
|
||||
}
|
||||
|
||||
.ink-panel-menubar .search-box {
|
||||
transition: width .2s;
|
||||
margin-left: -65px;
|
||||
width: 0;
|
||||
margin-right: 65px;
|
||||
background: white;
|
||||
}
|
||||
|
||||
.two-way-toggle {
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
}
|
||||
|
||||
.two-way-toggle span {
|
||||
padding-right: 7px;
|
||||
}
|
||||
|
||||
paper-listbox .pca-item {
|
||||
cursor: pointer;
|
||||
min-height: 17px;
|
||||
font-size: 12px;
|
||||
line-height: 17px;
|
||||
}
|
||||
|
||||
.has-border {
|
||||
border: 1px solid rgba(0, 0, 0, 0.1);
|
||||
}
|
||||
|
||||
</style>
|
||||
<link href="https://fonts.googleapis.com/css?family=Roboto:300,400,500|Material+Icons" rel="stylesheet" type="text/css">
|
||||
<div id="wrapper-notify-msg">
|
||||
<div id="notify-msg">Loading...</div>
|
||||
</div>
|
||||
<div id="container">
|
||||
<div id="left-pane" class="ink-panel">
|
||||
<div class="ink-panel-header">
|
||||
<div class="ink-tab-group">
|
||||
<div data-tab="tsne" class="ink-tab" title="t-distributed stochastic neighbor embedding">t-SNE</div>
|
||||
<div data-tab="pca" class="ink-tab" title="Principal component analysis">PCA</div>
|
||||
<div data-tab="custom" class="ink-tab" title="Linear projection of two custom vectors">Custom</div>
|
||||
</div>
|
||||
</div>
|
||||
<!-- TSNE Controls -->
|
||||
<div data-panel="tsne" class="ink-panel-content">
|
||||
<p><a href="https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding">t-distributed stochastic neighbor embedding</a> is a dimensionality reduction technique</p>
|
||||
<p style="color: #880E4F; font-weight: bold;">For fast results, your data will be sampled down to 10,000 points.</p>
|
||||
<div class="slider"><label>Dimension</label><div class="two-way-toggle"><span>2D</span><paper-toggle-button id="tsne-toggle" noink checked>3D</paper-toggle-button></div></div>
|
||||
<div class="slider tsne-perplexity">
|
||||
<label>Perplexity</label>
|
||||
<input type="range" min="2" max="100"></input>
|
||||
<span></span>
|
||||
</div>
|
||||
<div class="slider tsne-learning-rate">
|
||||
<label>Learning rate</label>
|
||||
<input type="range" min="-3" max="2"></input>
|
||||
<span></span>
|
||||
</div>
|
||||
<p>The most appropriate perplexity value depends on the density of your data. Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity. Typical values for the perplexity range between 5 and 50.</p>
|
||||
<p>The most appropriate learning rate depends on the size of your data, with smaller datasets requiring smaller learning rates.</p>
|
||||
<p>
|
||||
<button class="run-tsne ink-button">Run</button>
|
||||
<button class="stop-tsne ink-button">Stop</button>
|
||||
</p>
|
||||
<p>Iteration: <span class="run-tsne-iter">0</span></p>
|
||||
</div>
|
||||
<!-- PCA Controls -->
|
||||
<div data-panel="pca" class="ink-panel-content">
|
||||
<p><a href="https://en.wikipedia.org/wiki/Principal_component_analysis">Principal component analysis</a> is a dimensionality reduction technique</p>
|
||||
<label>X</label>
|
||||
<paper-listbox class="has-border" selected="{{pcaX}}">
|
||||
<template is="dom-repeat" items="[[pcaComponents]]">
|
||||
<paper-item class="pca-item">Component #[[item]]</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
<br/>
|
||||
<label>Y</label>
|
||||
<paper-listbox class="has-border" selected="{{pcaY}}">
|
||||
<template is="dom-repeat" items="[[pcaComponents]]">
|
||||
<paper-item class="pca-item">Component #[[item]]</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
<br/>
|
||||
<paper-checkbox noink id="z-checkbox" checked="{{hasPcaZ}}">Z</paper-checkbox>
|
||||
<paper-listbox class="has-border" disabled="true" selected="{{pcaZ}}">
|
||||
<template is="dom-repeat" items="[[pcaComponents]]">
|
||||
<paper-item disabled="[[!hasPcaZ]]" class="pca-item">Component #[[item]]</paper-item>
|
||||
</template>
|
||||
</paper-listbox>
|
||||
</div>
|
||||
<!-- Custom Controls -->
|
||||
<div data-panel="custom" class="ink-panel-content">
|
||||
<p>Search for two vectors upon which to project all points. Use <code>/regex/</code> to signal a regular expression, otherwise does an exact match.<p>
|
||||
<h3>Horizontal</h3>
|
||||
<div class="control xLeft">
|
||||
<label>Left</label>
|
||||
<input type="text" value="/\./"></input>
|
||||
<span class="info"></span>
|
||||
</div>
|
||||
<div class="control xRight last">
|
||||
<label>Right</label>
|
||||
<input type="text" value="/!/"></input>
|
||||
<span class="info"> </span>
|
||||
</div>
|
||||
<h3>Vertical</h3>
|
||||
<div class="control yUp">
|
||||
<label>Up</label>
|
||||
<input type="text" value="/./"></input>
|
||||
<span class="info"> </span>
|
||||
</div>
|
||||
<div class="control yDown last">
|
||||
<label>Down</label>
|
||||
<input type="text" value="/\?/"></input>
|
||||
<span class="info"> </span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="main" class="ink-panel">
|
||||
<div class="ink-panel-menubar">
|
||||
<button class="menu-button search" title="Search">
|
||||
<i class="material-icons">search</i>
|
||||
<span class="button-label">Search</span>
|
||||
</button>
|
||||
<div class="control search-box">
|
||||
<input type="text" value="">
|
||||
<span class="info"></span>
|
||||
</div>
|
||||
<button class="menu-button selectMode" title="Bounding box selection">
|
||||
<i class="material-icons">photo_size_select_small</i>
|
||||
Select
|
||||
</button>
|
||||
<button class="menu-button show-labels selected" title="Show/hide labels">
|
||||
<i class="material-icons">text_fields</i>
|
||||
Labels
|
||||
</button>
|
||||
<button class="menu-button nightDayMode" title="Toggle between night and day mode">
|
||||
<i class="material-icons">brightness_2</i>
|
||||
Night Mode
|
||||
</button>
|
||||
<div class="ink-fabs">
|
||||
<div class="ink-fab reset-zoom" title="Zoom to fit all">
|
||||
<i class="material-icons resetZoom">home</i>
|
||||
</div>
|
||||
<div class="ink-fab zoom-in" title="Zoom in">
|
||||
<i class="material-icons">add</i>
|
||||
</div>
|
||||
<div class="ink-fab zoom-out" title="Zoom out">
|
||||
<i class="material-icons">remove</i>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="stage">
|
||||
<div id="scatter"></div>
|
||||
</div>
|
||||
<div id="info-panel" class="ink-panel-footer">
|
||||
<div>
|
||||
Number of data points: <span class="numDataPoints"></span>, dimension of embedding: <span class="dim"></span>
|
||||
| <span id="hoverInfo"></span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="right-pane" class="ink-panel">
|
||||
<div class="ink-panel-header">
|
||||
<div class="ink-tab-group">
|
||||
<div data-tab="data" class="active ink-tab" title="Setup data">Data</div>
|
||||
<div data-tab="inspector" class="ink-tab" title="Inspect data">Inspector</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Inspector UI controls -->
|
||||
<div data-panel="inspector" class="ink-panel-content">
|
||||
<div class="ink-panel-metadata-container" style="display: none">
|
||||
<span>Metadata</span>
|
||||
<div class="ink-panel-metadata"></div>
|
||||
</div>
|
||||
<div class="ink-panel-buttons">
|
||||
<div style="margin-bottom: 10px">
|
||||
<button style="display: none;" class="ink-button reset-filter">Show All Data</button>
|
||||
</div>
|
||||
<button style="display: none;" class="ink-button set-filter">Isolate selection</button>
|
||||
<button class="ink-button clear-selection" style="display: none;">Clear selection</button>
|
||||
</div>
|
||||
<div class="slider num-nn">
|
||||
<label>Number of neighbors</label>
|
||||
<input type="range" min="5" max="1000"></input>
|
||||
<span></span>
|
||||
</div>
|
||||
<div class="distance">
|
||||
Distance:
|
||||
<div style="float:right">
|
||||
<a class="selected cosine" href="javascript:void(0);">cosine</a> |
|
||||
<a class="euclidean" href="javascript:void(0);">euclidean</a>
|
||||
</div>
|
||||
</div>
|
||||
<p>Nearest points to <b id="nn-title"></b></p>
|
||||
<div class="nn-list"></div>
|
||||
</div>
|
||||
|
||||
<!-- Data UI controls -->
|
||||
<div data-panel="data" class="active ink-panel-content">
|
||||
<vz-projector-data-loader data-source="{{dataSource}}" label-option="{{labelOption}}" color-option="{{colorOption}}"></vz-projector-data-loader>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</template>
|
||||
</dom-module>
|
@ -1,762 +0,0 @@
|
||||
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
import {DataPoint, DataSet, DataSource} from './data';
|
||||
import * as knn from './knn';
|
||||
import {Mode, Scatter} from './scatter';
|
||||
import {ScatterWebGL} from './scatterWebGL';
|
||||
import * as vector from './vector';
|
||||
import {ColorOption} from './vz-projector-data-loader';
|
||||
import {PolymerElement} from './vz-projector-util';
|
||||
|
||||
|
||||
/** T-SNE perplexity. Roughly how many neighbors each point influences. */
|
||||
let perplexity: number = 30;
|
||||
/** T-SNE learning rate. */
|
||||
let learningRate: number = 10;
|
||||
/** Number of dimensions for the scatter plot. */
|
||||
let dimension = 3;
|
||||
/** Number of nearest neighbors to highlight around the selected point. */
|
||||
let numNN = 100;
|
||||
|
||||
/** Highlight stroke color for the nearest neighbors. */
|
||||
const NN_HIGHLIGHT_COLOR = '#6666FA';
|
||||
|
||||
/** Highlight stroke color for the selected point */
|
||||
const POINT_HIGHLIGHT_COLOR_DAY = 'black';
|
||||
const POINT_HIGHLIGHT_COLOR_NIGHT = new THREE.Color(0xFFE11F).getStyle();
|
||||
|
||||
/** Color scale for nearest neighbors. */
|
||||
const NN_COLOR_SCALE =
|
||||
d3.scale.linear<string>()
|
||||
.domain([1, 0.7, 0.4])
|
||||
.range(['hsl(285, 80%, 40%)', 'hsl(0, 80%, 65%)', 'hsl(40, 70%, 60%)'])
|
||||
.clamp(true);
|
||||
|
||||
/** Text color used for error/important messages. */
|
||||
const CALLOUT_COLOR = '#880E4F';
|
||||
|
||||
type Centroids = {
|
||||
[key: string]: number[]; xLeft: number[]; xRight: number[]; yUp: number[];
|
||||
yDown: number[];
|
||||
};
|
||||
|
||||
let ProjectorPolymer = PolymerElement({
|
||||
is: 'vz-projector',
|
||||
properties: {
|
||||
// A data source.
|
||||
dataSource: {
|
||||
type: Object, // DataSource
|
||||
observer: 'dataSourceChanged'
|
||||
},
|
||||
|
||||
// Private.
|
||||
pcaComponents: {type: Array, value: d3.range(1, 11)},
|
||||
pcaX: {
|
||||
type: Number,
|
||||
value: 0,
|
||||
notify: true,
|
||||
},
|
||||
pcaY: {
|
||||
type: Number,
|
||||
value: 1,
|
||||
notify: true,
|
||||
},
|
||||
pcaZ: {
|
||||
type: Number,
|
||||
value: 2,
|
||||
notify: true,
|
||||
},
|
||||
hasPcaZ: {type: Boolean, value: true, notify: true},
|
||||
labelOption: {type: String, observer: 'labelOptionChanged'},
|
||||
colorOption: {type: Object, observer: 'colorOptionChanged'},
|
||||
}
|
||||
});
|
||||
|
||||
class Projector extends ProjectorPolymer {
|
||||
// Public API.
|
||||
dataSource: DataSource;
|
||||
|
||||
private dom: d3.Selection<any>;
|
||||
private pcaX: number;
|
||||
private pcaY: number;
|
||||
private pcaZ: number;
|
||||
private hasPcaZ: boolean;
|
||||
// The working subset of the data source's original data set.
|
||||
private currentDataSet: DataSet;
|
||||
private scatter: Scatter;
|
||||
private dim: number;
|
||||
private selectedDistance: (a: number[], b: number[]) => number;
|
||||
private highlightedPoints: {index: number, color: string}[];
|
||||
private selectedPoints: number[];
|
||||
private centroidValues: any;
|
||||
private centroids: Centroids;
|
||||
/** The centroid across all points. */
|
||||
private allCentroid: number[];
|
||||
private labelOption: string;
|
||||
private colorOption: ColorOption;
|
||||
|
||||
ready() {
|
||||
this.hasPcaZ = true;
|
||||
this.selectedDistance = vector.cosDistNorm;
|
||||
this.highlightedPoints = [];
|
||||
this.selectedPoints = [];
|
||||
this.centroidValues = {xLeft: null, xRight: null, yUp: null, yDown: null};
|
||||
this.centroids = {xLeft: null, xRight: null, yUp: null, yDown: null};
|
||||
// Dynamically creating elements inside .nn-list.
|
||||
this.scopeSubtree(this.$$('.nn-list'), true);
|
||||
this.dom = d3.select(this);
|
||||
// Sets up all the UI.
|
||||
this.setupUIControls();
|
||||
if (this.dataSource) {
|
||||
this.dataSourceChanged();
|
||||
}
|
||||
}
|
||||
|
||||
labelOptionChanged() {
|
||||
let labelAccessor = (i: number): string => {
|
||||
return this.points[i].metadata[this.labelOption] as string;
|
||||
};
|
||||
this.scatter.setLabelAccessor(labelAccessor);
|
||||
}
|
||||
|
||||
colorOptionChanged() {
|
||||
let colorMap = this.colorOption.map;
|
||||
if (colorMap == null) {
|
||||
this.scatter.setColorAccessor(null);
|
||||
return;
|
||||
};
|
||||
let colors = (i: number) => {
|
||||
return colorMap(this.points[i].metadata[this.colorOption.name]);
|
||||
};
|
||||
this.scatter.setColorAccessor(colors);
|
||||
}
|
||||
|
||||
dataSourceChanged() {
|
||||
if (this.scatter == null || this.dataSource == null) {
|
||||
// We are not ready yet.
|
||||
return;
|
||||
}
|
||||
this.initFromSource(this.dataSource);
|
||||
// Set the container to a fixed height, otherwise in Colab the
|
||||
// height can grow indefinitely.
|
||||
let container = this.dom.select('#container');
|
||||
container.style('height', container.property('clientHeight') + 'px');
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalizes the distance so it can be visually encoded with color.
|
||||
* The normalization depends on the distance metric (cosine vs euclidean).
|
||||
*/
|
||||
private normalizeDist(d: number, minDist: number): number {
|
||||
return this.selectedDistance === vector.cosDistNorm ? 1 - d : minDist / d;
|
||||
}
|
||||
|
||||
/** Normalizes and encodes the provided distance with color. */
|
||||
private dist2color(d: number, minDist: number): string {
|
||||
return NN_COLOR_SCALE(this.normalizeDist(d, minDist));
|
||||
}
|
||||
|
||||
private initFromSource(source: DataSource) {
|
||||
this.dataSource = source;
|
||||
this.setDataSet(this.dataSource.getDataSet());
|
||||
this.dom.select('.reset-filter').style('display', 'none');
|
||||
// Regexp inputs.
|
||||
this.setupInput('xLeft');
|
||||
this.setupInput('xRight');
|
||||
this.setupInput('yUp');
|
||||
this.setupInput('yDown');
|
||||
}
|
||||
|
||||
private setDataSet(ds: DataSet) {
|
||||
this.currentDataSet = ds;
|
||||
this.scatter.setDataSet(this.currentDataSet, this.dataSource.spriteImage);
|
||||
this.updateMenuButtons();
|
||||
this.dim = this.currentDataSet.dim[1];
|
||||
this.dom.select('span.numDataPoints').text(this.currentDataSet.dim[0]);
|
||||
this.dom.select('span.dim').text(this.currentDataSet.dim[1]);
|
||||
this.showTab('pca');
|
||||
}
|
||||
|
||||
private setupInput(name: string) {
|
||||
let control = this.dom.select('.control.' + name);
|
||||
let info = control.select('.info');
|
||||
|
||||
let updateInput = (value: string) => {
|
||||
if (value.trim() === '') {
|
||||
info.style('color', CALLOUT_COLOR).text('Enter a regex.');
|
||||
return;
|
||||
}
|
||||
let result = this.getCentroid(value);
|
||||
if (result.error) {
|
||||
info.style('color', CALLOUT_COLOR)
|
||||
.text('Invalid regex. Using a random vector.');
|
||||
result.centroid = vector.rn(this.dim);
|
||||
} else if (result.numMatches === 0) {
|
||||
info.style('color', CALLOUT_COLOR)
|
||||
.text('0 matches. Using a random vector.');
|
||||
result.centroid = vector.rn(this.dim);
|
||||
} else {
|
||||
info.style('color', null).text(`${result.numMatches} matches.`);
|
||||
}
|
||||
this.centroids[name] = result.centroid;
|
||||
this.centroidValues[name] = value;
|
||||
};
|
||||
let self = this;
|
||||
|
||||
let input = control.select('input').on('input', function() {
|
||||
updateInput(this.value);
|
||||
self.showCustom();
|
||||
});
|
||||
this.allCentroid = null;
|
||||
// Init the control with the current input.
|
||||
updateInput((input.node() as HTMLInputElement).value);
|
||||
}
|
||||
|
||||
private setupUIControls() {
|
||||
let self = this;
|
||||
// Global tabs
|
||||
d3.selectAll('.ink-tab').on('click', function() {
|
||||
let id = this.getAttribute('data-tab');
|
||||
self.showTab(id);
|
||||
});
|
||||
|
||||
// Unknown why, but the polymer toggle button stops working
|
||||
// as soon as you do d3.select() on it.
|
||||
let tsneToggle = this.querySelector('#tsne-toggle') as HTMLInputElement;
|
||||
let zCheckbox = this.querySelector('#z-checkbox') as HTMLInputElement;
|
||||
|
||||
// PCA controls.
|
||||
zCheckbox.addEventListener('change', () => {
|
||||
// Make sure tsne stays in the same dimension as PCA.
|
||||
dimension = this.hasPcaZ ? 3 : 2;
|
||||
tsneToggle.checked = this.hasPcaZ;
|
||||
this.showPCA(() => { this.scatter.recreateScene(); });
|
||||
});
|
||||
this.dom.on('pca-x-changed', () => this.showPCA());
|
||||
this.dom.on('pca-y-changed', () => this.showPCA());
|
||||
this.dom.on('pca-z-changed', () => this.showPCA());
|
||||
|
||||
// TSNE controls.
|
||||
|
||||
tsneToggle.addEventListener('change', () => {
|
||||
// Make sure PCA stays in the same dimension as tsne.
|
||||
this.hasPcaZ = tsneToggle.checked;
|
||||
dimension = tsneToggle.checked ? 3 : 2;
|
||||
if (this.scatter) {
|
||||
this.showTSNE();
|
||||
this.scatter.recreateScene();
|
||||
}
|
||||
});
|
||||
|
||||
this.dom.select('.run-tsne').on('click', () => this.runTSNE());
|
||||
this.dom.select('.stop-tsne').on('click', () => {
|
||||
this.currentDataSet.stopTSNE();
|
||||
});
|
||||
|
||||
let updatePerplexity = () => {
|
||||
perplexity = +perplexityInput.property('value');
|
||||
this.dom.select('.tsne-perplexity span').text(perplexity);
|
||||
};
|
||||
let perplexityInput = this.dom.select('.tsne-perplexity input')
|
||||
.property('value', perplexity)
|
||||
.on('input', updatePerplexity);
|
||||
updatePerplexity();
|
||||
|
||||
let updateLearningRate = () => {
|
||||
let val = +learningRateInput.property('value');
|
||||
learningRate = Math.pow(10, val);
|
||||
this.dom.select('.tsne-learning-rate span').text(learningRate);
|
||||
};
|
||||
let learningRateInput = this.dom.select('.tsne-learning-rate input')
|
||||
.property('value', 1)
|
||||
.on('input', updateLearningRate);
|
||||
updateLearningRate();
|
||||
|
||||
// Nearest neighbors controls.
|
||||
let updateNumNN = () => {
|
||||
numNN = +numNNInput.property('value');
|
||||
this.dom.select('.num-nn span').text(numNN);
|
||||
};
|
||||
let numNNInput = this.dom.select('.num-nn input')
|
||||
.property('value', numNN)
|
||||
.on('input', updateNumNN);
|
||||
updateNumNN();
|
||||
|
||||
// View controls
|
||||
this.dom.select('.reset-zoom').on('click', () => {
|
||||
this.scatter.resetZoom();
|
||||
});
|
||||
this.dom.select('.zoom-in').on('click', () => {
|
||||
this.scatter.zoomStep(2);
|
||||
});
|
||||
this.dom.select('.zoom-out').on('click', () => {
|
||||
this.scatter.zoomStep(0.5);
|
||||
});
|
||||
|
||||
// Toolbar controls
|
||||
let searchBox = this.dom.select('.control.search-box');
|
||||
let searchBoxInfo = searchBox.select('.info');
|
||||
|
||||
let searchByRegEx =
|
||||
(pattern: string): {error?: Error, indices: number[]} => {
|
||||
let regEx: RegExp;
|
||||
try {
|
||||
regEx = new RegExp(pattern, 'i');
|
||||
} catch (e) {
|
||||
return {error: e.message, indices: null};
|
||||
}
|
||||
let indices: number[] = [];
|
||||
for (let id = 0; id < this.points.length; ++id) {
|
||||
if (regEx.test('' + this.points[id].metadata['label'])) {
|
||||
indices.push(id);
|
||||
}
|
||||
}
|
||||
return {indices: indices};
|
||||
};
|
||||
|
||||
// Called whenever the search text input changes.
|
||||
let searchInputChanged = (value: string) => {
|
||||
if (value.trim() === '') {
|
||||
searchBoxInfo.style('color', CALLOUT_COLOR).text('Enter a regex.');
|
||||
if (this.scatter != null) {
|
||||
this.selectedPoints = [];
|
||||
this.selectionWasUpdated();
|
||||
}
|
||||
return;
|
||||
}
|
||||
let result = searchByRegEx(value);
|
||||
let indices = result.indices;
|
||||
if (result.error) {
|
||||
searchBoxInfo.style('color', CALLOUT_COLOR).text('Invalid regex.');
|
||||
}
|
||||
if (indices) {
|
||||
if (indices.length === 0) {
|
||||
searchBoxInfo.style('color', CALLOUT_COLOR).text(`0 matches.`);
|
||||
} else {
|
||||
searchBoxInfo.style('color', null).text(`${indices.length} matches.`);
|
||||
this.showTab('inspector');
|
||||
let neighbors = this.findNeighbors(indices[0]);
|
||||
if (indices.length === 1) {
|
||||
this.scatter.clickOnPoint(indices[0]);
|
||||
}
|
||||
this.selectedPoints = indices;
|
||||
this.updateNNList(neighbors);
|
||||
}
|
||||
this.selectionWasUpdated();
|
||||
}
|
||||
};
|
||||
|
||||
searchBox.select('input').on(
|
||||
'input', function() { searchInputChanged(this.value); });
|
||||
let searchButton = this.dom.select('.search');
|
||||
|
||||
searchButton.on('click', () => {
|
||||
let mode = this.scatter.getMode();
|
||||
this.scatter.setMode(mode === Mode.SEARCH ? Mode.HOVER : Mode.SEARCH);
|
||||
if (this.scatter.getMode() == Mode.HOVER) {
|
||||
this.selectedPoints = [];
|
||||
this.selectionWasUpdated();
|
||||
} else {
|
||||
searchInputChanged(searchBox.select('input').property('value'));
|
||||
}
|
||||
this.updateMenuButtons();
|
||||
});
|
||||
// Init the control with an empty input.
|
||||
searchInputChanged('');
|
||||
|
||||
this.dom.select('.distance a.euclidean').on('click', function() {
|
||||
d3.selectAll('.distance a').classed('selected', false);
|
||||
d3.select(this).classed('selected', true);
|
||||
self.selectedDistance = vector.dist;
|
||||
if (self.selectedPoints.length > 0) {
|
||||
let neighbors = self.findNeighbors(self.selectedPoints[0]);
|
||||
self.updateNNList(neighbors);
|
||||
}
|
||||
});
|
||||
|
||||
this.dom.select('.distance a.cosine').on('click', function() {
|
||||
d3.selectAll('.distance a').classed('selected', false);
|
||||
d3.select(this).classed('selected', true);
|
||||
self.selectedDistance = vector.cosDistNorm;
|
||||
if (self.selectedPoints.length > 0) {
|
||||
let neighbors = self.findNeighbors(self.selectedPoints[0]);
|
||||
self.updateNNList(neighbors);
|
||||
}
|
||||
});
|
||||
|
||||
let selectModeButton = this.dom.select('.selectMode');
|
||||
|
||||
selectModeButton.on('click', () => {
|
||||
let mode = this.scatter.getMode();
|
||||
this.scatter.setMode(mode === Mode.SELECT ? Mode.HOVER : Mode.SELECT);
|
||||
this.updateMenuButtons();
|
||||
});
|
||||
|
||||
let showLabels = true;
|
||||
let showLabelsButton = this.dom.select('.show-labels');
|
||||
showLabelsButton.on('click', () => {
|
||||
showLabels = !showLabels;
|
||||
this.scatter.showLabels(showLabels);
|
||||
showLabelsButton.classed('selected', showLabels);
|
||||
});
|
||||
|
||||
let dayNightModeButton = this.dom.select('.nightDayMode');
|
||||
let modeIsNight = dayNightModeButton.classed('selected');
|
||||
dayNightModeButton.on('click', () => {
|
||||
modeIsNight = !modeIsNight;
|
||||
this.scatter.setDayNightMode(modeIsNight);
|
||||
this.scatter.update();
|
||||
dayNightModeButton.classed('selected', modeIsNight);
|
||||
});
|
||||
|
||||
// Resize
|
||||
window.addEventListener('resize', () => { this.scatter.resize(); });
|
||||
|
||||
// Canvas
|
||||
this.scatter = new ScatterWebGL(
|
||||
this.dom.select('#scatter'),
|
||||
i => '' + this.points[i].metadata['label']);
|
||||
this.scatter.onHover(hoveredIndex => {
|
||||
if (hoveredIndex == null) {
|
||||
this.highlightedPoints = [];
|
||||
} else {
|
||||
let point = this.points[hoveredIndex];
|
||||
this.dom.select('#hoverInfo').text(point.metadata['label']);
|
||||
let neighbors = this.findNeighbors(hoveredIndex);
|
||||
let minDist = neighbors[0].dist;
|
||||
let pointIndices = [hoveredIndex].concat(neighbors.map(d => d.index));
|
||||
let pointHighlightColor = modeIsNight ? POINT_HIGHLIGHT_COLOR_NIGHT :
|
||||
POINT_HIGHLIGHT_COLOR_DAY;
|
||||
this.highlightedPoints = pointIndices.map((index, i) => {
|
||||
let color = i == 0 ? pointHighlightColor :
|
||||
this.dist2color(neighbors[i - 1].dist, minDist);
|
||||
return {index: index, color: color};
|
||||
});
|
||||
}
|
||||
this.selectionWasUpdated();
|
||||
});
|
||||
|
||||
this.scatter.onSelection(
|
||||
selectedPoints => this.updateSelection(selectedPoints));
|
||||
|
||||
// Selection controls
|
||||
this.dom.select('.set-filter').on('click', () => {
|
||||
let highlighted = this.selectedPoints;
|
||||
let highlightedOrig: number[] =
|
||||
highlighted.map(d => { return this.points[d].dataSourceIndex; });
|
||||
let subset = this.dataSource.getDataSet(highlightedOrig);
|
||||
this.setDataSet(subset);
|
||||
this.dom.select('.reset-filter').style('display', null);
|
||||
this.selectedPoints = [];
|
||||
this.scatter.recreateScene();
|
||||
this.selectionWasUpdated();
|
||||
this.updateIsolateButton();
|
||||
});
|
||||
|
||||
this.dom.select('.reset-filter').on('click', () => {
|
||||
let subset = this.dataSource.getDataSet();
|
||||
this.setDataSet(subset);
|
||||
this.dom.select('.reset-filter').style('display', 'none');
|
||||
});
|
||||
|
||||
this.dom.select('.clear-selection').on('click', () => {
|
||||
this.selectedPoints = [];
|
||||
this.scatter.setMode(Mode.HOVER);
|
||||
this.scatter.clickOnPoint(null);
|
||||
this.updateMenuButtons();
|
||||
this.selectionWasUpdated();
|
||||
});
|
||||
}
|
||||
|
||||
private updateSelection(selectedPoints: number[]) {
|
||||
// If no points are selected, unselect everything.
|
||||
if (!selectedPoints.length) {
|
||||
this.selectedPoints = [];
|
||||
this.updateNNList([]);
|
||||
}
|
||||
// If only one point is selected, we want to get its nearest neighbors
|
||||
// and change the UI accordingly.
|
||||
else if (selectedPoints.length === 1) {
|
||||
let selectedPoint = selectedPoints[0];
|
||||
this.showTab('inspector');
|
||||
let neighbors = this.findNeighbors(selectedPoint);
|
||||
this.selectedPoints = [selectedPoint].concat(neighbors.map(n => n.index));
|
||||
this.updateNNList(neighbors);
|
||||
}
|
||||
// Otherwise, select all points and hide nearest neighbors list.
|
||||
else {
|
||||
this.selectedPoints = selectedPoints as number[];
|
||||
this.highlightedPoints = [];
|
||||
this.updateNNList([]);
|
||||
}
|
||||
this.updateMetadata();
|
||||
this.selectionWasUpdated();
|
||||
}
|
||||
|
||||
private showPCA(callback?: () => void) {
|
||||
this.currentDataSet.projectPCA().then(() => {
|
||||
this.scatter.showTickLabels(false);
|
||||
let x = this.pcaX;
|
||||
let y = this.pcaY;
|
||||
let z = this.pcaZ;
|
||||
let hasZ = dimension == 3;
|
||||
this.scatter.setXAccessor(i => this.points[i].projections['pca-' + x]);
|
||||
this.scatter.setYAccessor(i => this.points[i].projections['pca-' + y]);
|
||||
this.scatter.setZAccessor(
|
||||
hasZ ? (i => this.points[i].projections['pca-' + z]) : null);
|
||||
this.scatter.setAxisLabels('pca-' + x, 'pca-' + y);
|
||||
this.scatter.update();
|
||||
if (callback) {
|
||||
callback();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
private showTab(id: string) {
|
||||
let tab = this.dom.select('.ink-tab[data-tab="' + id + '"]');
|
||||
let pane =
|
||||
d3.select((tab.node() as HTMLElement).parentNode.parentNode.parentNode);
|
||||
pane.selectAll('.ink-tab').classed('active', false);
|
||||
tab.classed('active', true);
|
||||
pane.selectAll('.ink-panel-content').classed('active', false);
|
||||
pane.select('.ink-panel-content[data-panel="' + id + '"]')
|
||||
.classed('active', true);
|
||||
if (id === 'pca') {
|
||||
this.showPCA(() => this.scatter.recreateScene());
|
||||
} else if (id === 'tsne') {
|
||||
this.showTSNE();
|
||||
} else if (id === 'custom') {
|
||||
this.showCustom();
|
||||
}
|
||||
}
|
||||
|
||||
private showCustom() {
|
||||
this.scatter.showTickLabels(true);
|
||||
let xDir = vector.sub(this.centroids.xRight, this.centroids.xLeft);
|
||||
this.currentDataSet.projectLinear(xDir, 'linear-x');
|
||||
this.scatter.setXAccessor(i => this.points[i].projections['linear-x']);
|
||||
|
||||
let yDir = vector.sub(this.centroids.yUp, this.centroids.yDown);
|
||||
this.currentDataSet.projectLinear(yDir, 'linear-y');
|
||||
this.scatter.setYAccessor(i => this.points[i].projections['linear-y']);
|
||||
|
||||
// Scatter is only in 2D in projection mode.
|
||||
this.scatter.setZAccessor(null);
|
||||
|
||||
let xLabel = this.centroidValues.xLeft + ' → ' + this.centroidValues.xRight;
|
||||
let yLabel = this.centroidValues.yUp + ' → ' + this.centroidValues.yDown;
|
||||
this.scatter.setAxisLabels(xLabel, yLabel);
|
||||
this.scatter.update();
|
||||
this.scatter.recreateScene();
|
||||
}
|
||||
|
||||
private get points() { return this.currentDataSet.points; }
|
||||
|
||||
private showTSNE() {
|
||||
this.scatter.showTickLabels(false);
|
||||
this.scatter.setXAccessor(i => this.points[i].projections['tsne-0']);
|
||||
this.scatter.setYAccessor(i => this.points[i].projections['tsne-1']);
|
||||
this.scatter.setZAccessor(
|
||||
dimension === 3 ? (i => this.points[i].projections['tsne-2']) : null);
|
||||
this.scatter.setAxisLabels('tsne-0', 'tsne-1');
|
||||
}
|
||||
|
||||
private runTSNE() {
|
||||
this.currentDataSet.projectTSNE(
|
||||
perplexity, learningRate, dimension, (iteration: number) => {
|
||||
if (iteration != null) {
|
||||
this.dom.select('.run-tsne-iter').text(iteration);
|
||||
this.scatter.update();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Updates the displayed metadata for the selected point.
|
||||
private updateMetadata() {
|
||||
let metadataContainerElement = this.dom.select('.ink-panel-metadata');
|
||||
metadataContainerElement.selectAll('*').remove();
|
||||
|
||||
let display = false;
|
||||
if (this.selectedPoints.length >= 1) {
|
||||
let selectedPoint = this.points[this.selectedPoints[0]];
|
||||
|
||||
for (let metadataKey in selectedPoint.metadata) {
|
||||
let rowElement = document.createElement('div');
|
||||
rowElement.className = 'ink-panel-metadata-row vz-projector';
|
||||
|
||||
let keyElement = document.createElement('div');
|
||||
keyElement.className = 'ink-panel-metadata-key vz-projector';
|
||||
keyElement.textContent = metadataKey;
|
||||
|
||||
let valueElement = document.createElement('div');
|
||||
valueElement.className = 'ink-panel-metadata-value vz-projector';
|
||||
valueElement.textContent = '' + selectedPoint.metadata[metadataKey];
|
||||
|
||||
rowElement.appendChild(keyElement);
|
||||
rowElement.appendChild(valueElement);
|
||||
|
||||
metadataContainerElement.append(function() {
|
||||
return this.appendChild(rowElement);
|
||||
});
|
||||
}
|
||||
|
||||
display = true;
|
||||
}
|
||||
|
||||
this.dom.select('.ink-panel-metadata-container')
|
||||
.style('display', display ? '' : 'none');
|
||||
}
|
||||
|
||||
private selectionWasUpdated() {
|
||||
this.dom.select('#hoverInfo')
|
||||
.text(`Selected ${this.selectedPoints.length} points`);
|
||||
let allPoints =
|
||||
this.highlightedPoints.map(x => x.index).concat(this.selectedPoints);
|
||||
let stroke = (i: number) => {
|
||||
return i < this.highlightedPoints.length ?
|
||||
this.highlightedPoints[i].color :
|
||||
NN_HIGHLIGHT_COLOR;
|
||||
};
|
||||
let favor = (i: number) => {
|
||||
return i == 0 || (i < this.highlightedPoints.length ? false : true);
|
||||
};
|
||||
this.scatter.highlightPoints(allPoints, stroke, favor);
|
||||
this.updateIsolateButton();
|
||||
}
|
||||
|
||||
private updateMenuButtons() {
|
||||
let searchBox = this.dom.select('.control.search-box');
|
||||
this.dom.select('.search').classed(
|
||||
'selected', this.scatter.getMode() === Mode.SEARCH);
|
||||
let searchMode = this.scatter.getMode() === Mode.SEARCH;
|
||||
this.dom.select('.control.search-box')
|
||||
.style('width', searchMode ? '110px' : null)
|
||||
.style('margin-right', searchMode ? '10px' : null);
|
||||
(searchBox.select('input').node() as HTMLInputElement).focus();
|
||||
this.dom.select('.selectMode')
|
||||
.classed('selected', this.scatter.getMode() === Mode.SELECT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the nearest neighbors of the currently selected point using the
|
||||
* currently selected distance method.
|
||||
*/
|
||||
private findNeighbors(pointIndex: number): knn.NearestEntry[] {
|
||||
// Find the nearest neighbors of a particular point.
|
||||
let neighbors = knn.findKNNofPoint(
|
||||
this.points, pointIndex, numNN, (d => d.vector), this.selectedDistance);
|
||||
let result = neighbors.slice(0, numNN);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Updates the nearest neighbors list in the inspector. */
|
||||
private updateNNList(neighbors: knn.NearestEntry[]) {
|
||||
let nnlist = this.dom.select('.nn-list');
|
||||
nnlist.html('');
|
||||
|
||||
if (neighbors.length == 0) {
|
||||
this.dom.select('#nn-title').text('');
|
||||
return;
|
||||
}
|
||||
|
||||
let selectedPoint = this.points[this.selectedPoints[0]];
|
||||
this.dom.select('#nn-title')
|
||||
.text(selectedPoint != null ? selectedPoint.metadata['label'] : '');
|
||||
|
||||
let minDist = neighbors.length > 0 ? neighbors[0].dist : 0;
|
||||
let n = nnlist.selectAll('.neighbor')
|
||||
.data(neighbors)
|
||||
.enter()
|
||||
.append('div')
|
||||
.attr('class', 'neighbor')
|
||||
.append('a')
|
||||
.attr('class', 'neighbor-link');
|
||||
|
||||
n.append('span')
|
||||
.attr('class', 'label')
|
||||
.style('color', d => this.dist2color(d.dist, minDist))
|
||||
.text(d => this.points[d.index].metadata['label']);
|
||||
|
||||
n.append('span').attr('class', 'value').text(d => d.dist.toFixed(2));
|
||||
|
||||
let bar = n.append('div').attr('class', 'bar');
|
||||
|
||||
bar.append('div')
|
||||
.attr('class', 'fill')
|
||||
.style('border-top-color', d => this.dist2color(d.dist, minDist))
|
||||
.style('width', d => this.normalizeDist(d.dist, minDist) * 100 + '%');
|
||||
|
||||
bar.selectAll('.tick')
|
||||
.data(d3.range(1, 4))
|
||||
.enter()
|
||||
.append('div')
|
||||
.attr('class', 'tick')
|
||||
.style('left', d => d * 100 / 4 + '%');
|
||||
|
||||
n.on('click', d => { this.updateSelection([d.index]); });
|
||||
}
|
||||
|
||||
private updateIsolateButton() {
|
||||
let numPoints = this.selectedPoints.length;
|
||||
let isolateButton = this.dom.select('.set-filter');
|
||||
let clearButton = this.dom.select('button.clear-selection');
|
||||
if (numPoints > 1) {
|
||||
isolateButton.text(`Isolate ${numPoints} points`).style('display', null);
|
||||
clearButton.style('display', null);
|
||||
} else {
|
||||
isolateButton.style('display', 'none');
|
||||
clearButton.style('display', 'none');
|
||||
}
|
||||
}
|
||||
|
||||
private getCentroid(pattern: string): CentroidResult {
|
||||
let accessor = (a: DataPoint) => a.vector;
|
||||
if (pattern == null) {
|
||||
return {numMatches: 0};
|
||||
}
|
||||
if (pattern == '') {
|
||||
if (this.allCentroid == null) {
|
||||
this.allCentroid =
|
||||
vector.centroid(this.points, () => true, accessor).centroid;
|
||||
}
|
||||
return {centroid: this.allCentroid, numMatches: this.points.length};
|
||||
}
|
||||
|
||||
let regExp: RegExp;
|
||||
let predicate: (a: DataPoint) => boolean;
|
||||
// Check for a regex.
|
||||
if (pattern.charAt(0) == '/' && pattern.charAt(pattern.length - 1) == '/') {
|
||||
pattern = pattern.slice(1, pattern.length - 1);
|
||||
try {
|
||||
regExp = new RegExp(pattern, 'i');
|
||||
} catch (e) {
|
||||
return {error: e.message};
|
||||
}
|
||||
predicate =
|
||||
(a: DataPoint) => { return regExp.test('' + a.metadata['label']); };
|
||||
// else does an exact match
|
||||
} else {
|
||||
predicate = (a: DataPoint) => { return a.metadata['label'] == pattern; };
|
||||
}
|
||||
return vector.centroid(this.points, predicate, accessor);
|
||||
}
|
||||
}
|
||||
|
||||
type CentroidResult = {
|
||||
centroid?: number[]; numMatches?: number; error?: string
|
||||
};
|
||||
|
||||
document.registerElement(Projector.prototype.is, Projector);
|
@ -19,67 +19,20 @@ var typescript = require('typescript');
|
||||
var gutil = require('gulp-util');
|
||||
var filter = require('gulp-filter');
|
||||
var merge = require('merge2');
|
||||
var browserify = require('browserify');
|
||||
var tsify = require('tsify');
|
||||
var source = require('vinyl-source-stream');
|
||||
var glob = require('glob').sync;
|
||||
var concat = require('gulp-concat');
|
||||
|
||||
var tsProject = ts.createProject('./tsconfig.json', {
|
||||
typescript: typescript,
|
||||
noExternalResolve: true, // opt-in for faster compilation!
|
||||
});
|
||||
|
||||
/** List of components (and their external deps) that are using es6 modules. */
|
||||
var ES6_COMPONENTS = [{
|
||||
name: 'vz-projector',
|
||||
deps: [
|
||||
'd3/d3.min.js', 'weblas/dist/weblas.js', 'three.js/build/three.min.js',
|
||||
'three.js/examples/js/controls/OrbitControls.js',
|
||||
'numericjs/lib/numeric-1.2.6.js'
|
||||
]
|
||||
}];
|
||||
|
||||
module.exports = function() {
|
||||
// Compile all components that are using ES6 modules into a bundle.js
|
||||
// using browserify.
|
||||
var entries = ['typings/index.d.ts'];
|
||||
var deps = {};
|
||||
ES6_COMPONENTS.forEach(function(component) {
|
||||
// Collect all the typescript files across the components.
|
||||
entries = entries.concat(glob(
|
||||
'components/' + component.name + '/**/*.ts',
|
||||
// Do not include tests.
|
||||
{ignore: 'components/' + component.name + '/**/*_test.ts'}));
|
||||
// Collect the unique external deps across all components using es6 modules.
|
||||
component.deps.forEach(function(dep) { deps['components/' + dep] = true; });
|
||||
});
|
||||
deps = Object.keys(deps);
|
||||
|
||||
// Compile, bundle all the typescript files and prepend their deps.
|
||||
browserify(entries)
|
||||
.plugin(tsify)
|
||||
.bundle()
|
||||
.on('error', function(error) { console.error(error.toString()); })
|
||||
.pipe(source('app.js'))
|
||||
.pipe(gulp.dest('components'))
|
||||
.on('end', function() {
|
||||
// Typescript was compiled and bundled. Now we need to prepend
|
||||
// the external dependencies.
|
||||
gulp.src(deps.concat(['components/app.js']))
|
||||
.pipe(concat('bundle.js'))
|
||||
.pipe(gulp.dest('components'));
|
||||
});
|
||||
|
||||
// Compile components that are using global namespaces producing 1 js file
|
||||
// for each ts file.
|
||||
var isComponent = filter([
|
||||
'components/tf-*/**/*.ts', 'components/vz-*/**/*.ts', 'typings/**/*.ts',
|
||||
'components/tf-*/**/*.ts',
|
||||
'components/vz-*/**/*.ts',
|
||||
'typings/**/*.ts',
|
||||
'components/plottable/plottable.d.ts'
|
||||
// Ignore components that use es6 modules.
|
||||
].concat(ES6_COMPONENTS.map(function(component) {
|
||||
return '!components/' + component.name + '/**/*.ts';
|
||||
})));
|
||||
]);
|
||||
|
||||
return tsProject.src()
|
||||
.pipe(isComponent)
|
||||
|
@ -13,14 +13,9 @@
|
||||
"author": "Google",
|
||||
"license": "Apache-2.0",
|
||||
"devDependencies": {
|
||||
"browserify": "^13.1.0",
|
||||
"gulp": "~3.9.0",
|
||||
"gulp-bower": "0.0.13",
|
||||
"gulp-cli": "^1.1.0",
|
||||
"gulp-concat": "^2.6.0",
|
||||
"gulp-filter": "~3.0.1",
|
||||
"gulp-header": "~1.7.1",
|
||||
"gulp-rename": "~1.2.2",
|
||||
"gulp-replace": "~0.5.4",
|
||||
"gulp-server-livereload": "~1.5.4",
|
||||
"gulp-tslint": "~4.2.2",
|
||||
@ -29,12 +24,13 @@
|
||||
"gulp-vulcanize": "~6.1.0",
|
||||
"merge2": "~0.3.6",
|
||||
"minimist": "~1.2.0",
|
||||
"tsify": "^0.15.6",
|
||||
"tslint": "^3.2.1",
|
||||
"typescript": "^2.0.0",
|
||||
"typings": "~1.0.4",
|
||||
"vinyl-source-stream": "^1.1.0",
|
||||
"typescript": "1.8.0",
|
||||
"vulcanize": "^1.14.0",
|
||||
"web-component-tester": "4.2.2"
|
||||
"web-component-tester": "4.2.2",
|
||||
"gulp-header": "~1.7.1",
|
||||
"gulp-rename": "~1.2.2",
|
||||
"gulp-bower": "0.0.13",
|
||||
"typings": "~1.0.4"
|
||||
}
|
||||
}
|
||||
|
@ -2,8 +2,7 @@
|
||||
"compilerOptions": {
|
||||
"noImplicitAny": false,
|
||||
"noEmitOnError": true,
|
||||
"target": "ES5",
|
||||
"module": "commonjs"
|
||||
"target": "ES5"
|
||||
},
|
||||
"compileOnSave": false,
|
||||
"exclude": [
|
||||
|
@ -9,7 +9,6 @@
|
||||
"mocha": "registry:dt/mocha#2.2.5+20160317120654",
|
||||
"polymer": "registry:dt/polymer#1.1.6+20160317120654",
|
||||
"sinon": "registry:dt/sinon#1.16.0+20160517064723",
|
||||
"three": "registry:dt/three#0.0.0+20160802154944",
|
||||
"webcomponents.js": "registry:dt/webcomponents.js#0.6.0+20160317120654"
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user