Preserve shape information when passing SparseTensors to dataset functions
When we flatten SparseTensors into Tensors, the dense_shape of the SparseTensor is stored as a Tensor of dimensions instead of as a shape. Function tracing uses placeholder Tensors with no content, making it look as though all input SparseTensors have undefined shape. This CL improves tracing by restoring SparseTensors' dense_shapes from their original SparseTensorSpecs. PiperOrigin-RevId: 264927072
This commit is contained in:
parent
9f00c8dbdf
commit
0f65838cb9
@ -733,6 +733,30 @@ class MapTest(test_base.DatasetTestBase, parameterized.TestCase):
|
|||||||
dataset,
|
dataset,
|
||||||
expected_output=[self.evaluate(_check(_sparse(i))) for i in range(10)])
|
expected_output=[self.evaluate(_check(_sparse(i))) for i in range(10)])
|
||||||
|
|
||||||
|
def testSparseMapShapeInference(self):
|
||||||
|
if not context.executing_eagerly():
|
||||||
|
self.skipTest("SparseTensor shape inference requires eager mode")
|
||||||
|
row_lengths = np.random.randint(0, 4, size=128)
|
||||||
|
values = np.ones(np.sum(row_lengths))
|
||||||
|
sparse = ragged_tensor.RaggedTensor.from_row_lengths(
|
||||||
|
values, row_lengths).to_sparse()
|
||||||
|
dataset = dataset_ops.Dataset.from_tensor_slices(sparse)
|
||||||
|
dataset = dataset.batch(32, drop_remainder=True)
|
||||||
|
dataset = dataset.map(lambda x: x)
|
||||||
|
self.assertEqual((32, 3), dataset.element_spec.shape)
|
||||||
|
|
||||||
|
def testSparseMapShapeInferencePartial(self):
|
||||||
|
if not context.executing_eagerly():
|
||||||
|
self.skipTest("SparseTensor shape inference requires eager mode")
|
||||||
|
row_lengths = np.random.randint(0, 4, size=128)
|
||||||
|
values = np.ones(np.sum(row_lengths))
|
||||||
|
sparse = ragged_tensor.RaggedTensor.from_row_lengths(
|
||||||
|
values, row_lengths).to_sparse()
|
||||||
|
dataset = dataset_ops.Dataset.from_tensor_slices(sparse)
|
||||||
|
dataset = dataset.batch(32, drop_remainder=False)
|
||||||
|
dataset = dataset.map(lambda x: x)
|
||||||
|
self.assertEqual([None, 3], dataset.element_spec.shape.as_list())
|
||||||
|
|
||||||
def testTensorArray(self):
|
def testTensorArray(self):
|
||||||
|
|
||||||
def _tensor_array(i):
|
def _tensor_array(i):
|
||||||
|
@ -24,6 +24,7 @@ import numpy as np
|
|||||||
from tensorflow.python import pywrap_tensorflow
|
from tensorflow.python import pywrap_tensorflow
|
||||||
from tensorflow.python import tf2
|
from tensorflow.python import tf2
|
||||||
from tensorflow.python.framework import composite_tensor
|
from tensorflow.python.framework import composite_tensor
|
||||||
|
from tensorflow.python.framework import constant_op
|
||||||
from tensorflow.python.framework import dtypes
|
from tensorflow.python.framework import dtypes
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.framework import tensor_like
|
from tensorflow.python.framework import tensor_like
|
||||||
@ -338,11 +339,28 @@ class SparseTensorSpec(type_spec.BatchableTypeSpec):
|
|||||||
|
|
||||||
def _from_compatible_tensor_list(self, tensor_list):
|
def _from_compatible_tensor_list(self, tensor_list):
|
||||||
tensor_list = gen_sparse_ops.deserialize_sparse(tensor_list[0], self._dtype)
|
tensor_list = gen_sparse_ops.deserialize_sparse(tensor_list[0], self._dtype)
|
||||||
result = SparseTensor(*tensor_list)
|
indices, values, dense_shape = tensor_list
|
||||||
rank = self._shape.ndims
|
rank = self._shape.ndims
|
||||||
result.indices.set_shape([None, rank])
|
indices.set_shape([None, rank])
|
||||||
result.dense_shape.set_shape([rank])
|
# We restore the dense_shape from the SparseTypeSpec. This is necessary
|
||||||
return result
|
# for shape inference when using placeholder SparseTensors in function
|
||||||
|
# tracing.
|
||||||
|
if self._shape.is_fully_defined():
|
||||||
|
dense_shape = ops.convert_to_tensor(
|
||||||
|
self._shape, dtype=dtypes.int64, name="shape")
|
||||||
|
elif (self._shape.rank is not None and
|
||||||
|
any(dim.value is not None for dim in self._shape.dims)):
|
||||||
|
# array_ops imports sparse_tensor.py. Local import to avoid import cycle.
|
||||||
|
from tensorflow.python.ops import array_ops # pylint: disable=g-import-not-at-top
|
||||||
|
pieces = array_ops.unstack(dense_shape, num=self._shape.rank)
|
||||||
|
for i, dim in enumerate(self._shape.dims):
|
||||||
|
if dim.value is not None:
|
||||||
|
pieces[i] = constant_op.constant(dim.value, dense_shape.dtype)
|
||||||
|
dense_shape = array_ops.stack(pieces)
|
||||||
|
else:
|
||||||
|
dense_shape.set_shape([rank])
|
||||||
|
|
||||||
|
return SparseTensor(indices, values, dense_shape)
|
||||||
|
|
||||||
def _batch(self, batch_size):
|
def _batch(self, batch_size):
|
||||||
return SparseTensorSpec(
|
return SparseTensorSpec(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user