Preserve shape information when passing SparseTensors to dataset functions
When we flatten SparseTensors into Tensors, the dense_shape of the SparseTensor is stored as a Tensor of dimensions instead of as a shape. Function tracing uses placeholder Tensors with no content, making it look as though all input SparseTensors have undefined shape. This CL improves tracing by restoring SparseTensors' dense_shapes from their original SparseTensorSpecs. PiperOrigin-RevId: 264927072
This commit is contained in:
parent
9f00c8dbdf
commit
0f65838cb9
tensorflow/python
@ -733,6 +733,30 @@ class MapTest(test_base.DatasetTestBase, parameterized.TestCase):
|
||||
dataset,
|
||||
expected_output=[self.evaluate(_check(_sparse(i))) for i in range(10)])
|
||||
|
||||
def testSparseMapShapeInference(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("SparseTensor shape inference requires eager mode")
|
||||
row_lengths = np.random.randint(0, 4, size=128)
|
||||
values = np.ones(np.sum(row_lengths))
|
||||
sparse = ragged_tensor.RaggedTensor.from_row_lengths(
|
||||
values, row_lengths).to_sparse()
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices(sparse)
|
||||
dataset = dataset.batch(32, drop_remainder=True)
|
||||
dataset = dataset.map(lambda x: x)
|
||||
self.assertEqual((32, 3), dataset.element_spec.shape)
|
||||
|
||||
def testSparseMapShapeInferencePartial(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("SparseTensor shape inference requires eager mode")
|
||||
row_lengths = np.random.randint(0, 4, size=128)
|
||||
values = np.ones(np.sum(row_lengths))
|
||||
sparse = ragged_tensor.RaggedTensor.from_row_lengths(
|
||||
values, row_lengths).to_sparse()
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices(sparse)
|
||||
dataset = dataset.batch(32, drop_remainder=False)
|
||||
dataset = dataset.map(lambda x: x)
|
||||
self.assertEqual([None, 3], dataset.element_spec.shape.as_list())
|
||||
|
||||
def testTensorArray(self):
|
||||
|
||||
def _tensor_array(i):
|
||||
|
@ -24,6 +24,7 @@ import numpy as np
|
||||
from tensorflow.python import pywrap_tensorflow
|
||||
from tensorflow.python import tf2
|
||||
from tensorflow.python.framework import composite_tensor
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_like
|
||||
@ -338,11 +339,28 @@ class SparseTensorSpec(type_spec.BatchableTypeSpec):
|
||||
|
||||
def _from_compatible_tensor_list(self, tensor_list):
|
||||
tensor_list = gen_sparse_ops.deserialize_sparse(tensor_list[0], self._dtype)
|
||||
result = SparseTensor(*tensor_list)
|
||||
indices, values, dense_shape = tensor_list
|
||||
rank = self._shape.ndims
|
||||
result.indices.set_shape([None, rank])
|
||||
result.dense_shape.set_shape([rank])
|
||||
return result
|
||||
indices.set_shape([None, rank])
|
||||
# We restore the dense_shape from the SparseTypeSpec. This is necessary
|
||||
# for shape inference when using placeholder SparseTensors in function
|
||||
# tracing.
|
||||
if self._shape.is_fully_defined():
|
||||
dense_shape = ops.convert_to_tensor(
|
||||
self._shape, dtype=dtypes.int64, name="shape")
|
||||
elif (self._shape.rank is not None and
|
||||
any(dim.value is not None for dim in self._shape.dims)):
|
||||
# array_ops imports sparse_tensor.py. Local import to avoid import cycle.
|
||||
from tensorflow.python.ops import array_ops # pylint: disable=g-import-not-at-top
|
||||
pieces = array_ops.unstack(dense_shape, num=self._shape.rank)
|
||||
for i, dim in enumerate(self._shape.dims):
|
||||
if dim.value is not None:
|
||||
pieces[i] = constant_op.constant(dim.value, dense_shape.dtype)
|
||||
dense_shape = array_ops.stack(pieces)
|
||||
else:
|
||||
dense_shape.set_shape([rank])
|
||||
|
||||
return SparseTensor(indices, values, dense_shape)
|
||||
|
||||
def _batch(self, batch_size):
|
||||
return SparseTensorSpec(
|
||||
|
Loading…
Reference in New Issue
Block a user