diff --git a/tensorflow/lite/g3doc/convert/python_api.md b/tensorflow/lite/g3doc/convert/python_api.md index b914a34fa87..4d2c7361c9f 100644 --- a/tensorflow/lite/g3doc/convert/python_api.md +++ b/tensorflow/lite/g3doc/convert/python_api.md @@ -19,9 +19,9 @@ be targeted to devices with mobile. ## API -The API for converting TensorFlow models to TensorFlow Lite as of TensorFlow 1.9 -is `tf.lite.TFLiteConverter`. The API for calling the Python intepreter -is `tf.lite.Interpreter`. +The API for converting TensorFlow models to TensorFlow Lite is +`tf.lite.TFLiteConverter`. The API for calling the Python interpreter is +`tf.lite.Interpreter`. `TFLiteConverter` provides class methods based on the original format of the model. `TFLiteConverter.from_session()` is available for GraphDefs. diff --git a/tensorflow/lite/tutorials/post_training_quant.ipynb b/tensorflow/lite/tutorials/post_training_quant.ipynb index 3ff145d9ce9..394ab0760b5 100644 --- a/tensorflow/lite/tutorials/post_training_quant.ipynb +++ b/tensorflow/lite/tutorials/post_training_quant.ipynb @@ -235,9 +235,9 @@ "id": "AT8BgkKmljOy" }, "source": [ - "Using the python `TocoConverter`, the saved model can be converted into a TFLite model.\n", + "Using the python `TFLiteConverter`, the saved model can be converted into a TFLite model.\n", "\n", - "First load the model using the `TocoConverter`:" + "First load the model using the `TFLiteConverter`:" ] }, { @@ -252,7 +252,7 @@ "source": [ "import tensorflow as tf\n", "tf.enable_eager_execution()\n", - "converter = tf.lite.TocoConverter.from_saved_model(saved_model_dir)\n", + "converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\n", "tflite_model = converter.convert()" ] }, @@ -648,7 +648,7 @@ "graph_def_file = pathlib.Path(archive_path).parent/\"resnet_v2_101_299_frozen.pb\"\n", "input_arrays = [\"input\"] \n", "output_arrays = [\"output\"]\n", - "converter = tf.lite.TocoConverter.from_frozen_graph(\n", + "converter = tf.lite.TFLiteConverter.from_frozen_graph(\n", " str(graph_def_file), input_arrays, output_arrays, input_shapes={\"input\":[1,299,299,3]})\n", "converter.post_training_quantize = True\n", "resnet_tflite_file = graph_def_file.parent/\"resnet_v2_101_quantized.tflite\"\n",