Activation tests for XNNPACK delegate
- RELU/RELU6/RELU_N1_TO_1 operations - LOGISTIC (Sigmoid) operation - HARD_SWISH operation PiperOrigin-RevId: 307559856 Change-Id: I4bcddcb944b373dfeed639c6f08ad9fef8811b93
This commit is contained in:
parent
d68284a16f
commit
0ead27a263
@ -90,6 +90,21 @@ cc_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "unary_elementwise_tester",
|
||||||
|
testonly = 1,
|
||||||
|
srcs = ["unary_elementwise_tester.cc"],
|
||||||
|
hdrs = ["unary_elementwise_tester.h"],
|
||||||
|
deps = [
|
||||||
|
"//tensorflow/lite:framework",
|
||||||
|
"//tensorflow/lite:schema_fbs_version",
|
||||||
|
"//tensorflow/lite/kernels:builtin_ops",
|
||||||
|
"//tensorflow/lite/schema:schema_fbs",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
"@flatbuffers",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
############################## Integration tests ###############################
|
############################## Integration tests ###############################
|
||||||
|
|
||||||
cc_library(
|
cc_library(
|
||||||
@ -104,36 +119,6 @@ cc_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
cc_test(
|
|
||||||
name = "average_pool_2d_test",
|
|
||||||
srcs = ["average_pool_2d_test.cc"],
|
|
||||||
linkopts = select({
|
|
||||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
|
||||||
"//conditions:default": [],
|
|
||||||
}),
|
|
||||||
deps = [
|
|
||||||
":pool_2d_tester",
|
|
||||||
":test_main",
|
|
||||||
":xnnpack_delegate_test_mode",
|
|
||||||
"@com_google_googletest//:gtest",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
cc_test(
|
|
||||||
name = "max_pool_2d_test",
|
|
||||||
srcs = ["max_pool_2d_test.cc"],
|
|
||||||
linkopts = select({
|
|
||||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
|
||||||
"//conditions:default": [],
|
|
||||||
}),
|
|
||||||
deps = [
|
|
||||||
":pool_2d_tester",
|
|
||||||
":test_main",
|
|
||||||
":xnnpack_delegate_test_mode",
|
|
||||||
"@com_google_googletest//:gtest",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
cc_test(
|
cc_test(
|
||||||
name = "add_test",
|
name = "add_test",
|
||||||
srcs = ["add_test.cc"],
|
srcs = ["add_test.cc"],
|
||||||
@ -150,14 +135,14 @@ cc_test(
|
|||||||
)
|
)
|
||||||
|
|
||||||
cc_test(
|
cc_test(
|
||||||
name = "mul_test",
|
name = "average_pool_2d_test",
|
||||||
srcs = ["mul_test.cc"],
|
srcs = ["average_pool_2d_test.cc"],
|
||||||
linkopts = select({
|
linkopts = select({
|
||||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
"//conditions:default": [],
|
"//conditions:default": [],
|
||||||
}),
|
}),
|
||||||
deps = [
|
deps = [
|
||||||
":binary_elementwise_tester",
|
":pool_2d_tester",
|
||||||
":test_main",
|
":test_main",
|
||||||
":xnnpack_delegate_test_mode",
|
":xnnpack_delegate_test_mode",
|
||||||
"@com_google_googletest//:gtest",
|
"@com_google_googletest//:gtest",
|
||||||
@ -199,4 +184,109 @@ cc_test(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "hard_swish_test",
|
||||||
|
srcs = ["hard_swish_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":test_main",
|
||||||
|
":unary_elementwise_tester",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "max_pool_2d_test",
|
||||||
|
srcs = ["max_pool_2d_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":pool_2d_tester",
|
||||||
|
":test_main",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "logistic_test",
|
||||||
|
srcs = ["logistic_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":test_main",
|
||||||
|
":unary_elementwise_tester",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "mul_test",
|
||||||
|
srcs = ["mul_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":binary_elementwise_tester",
|
||||||
|
":test_main",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "relu_test",
|
||||||
|
srcs = ["relu_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":test_main",
|
||||||
|
":unary_elementwise_tester",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "relu6_test",
|
||||||
|
srcs = ["relu6_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":test_main",
|
||||||
|
":unary_elementwise_tester",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "relu_n1_to_1_test",
|
||||||
|
srcs = ["relu_n1_to_1_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":test_main",
|
||||||
|
":unary_elementwise_tester",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
tflite_portable_test_suite_combined(combine_conditions = {"deps": [":test_main"]})
|
tflite_portable_test_suite_combined(combine_conditions = {"deps": [":test_main"]})
|
||||||
|
120
tensorflow/lite/delegates/xnnpack/hard_swish_test.cc
Normal file
120
tensorflow/lite/delegates/xnnpack/hard_swish_test.cc
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(HardSwish, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_HARD_SWISH, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(HardSwish, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, width, channels})
|
||||||
|
.Test(BuiltinOperator_HARD_SWISH, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(HardSwish, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, channels})
|
||||||
|
.Test(BuiltinOperator_HARD_SWISH, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(HardSwish, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_HARD_SWISH,
|
||||||
|
xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(HardSwish, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_HARD_SWISH, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
120
tensorflow/lite/delegates/xnnpack/logistic_test.cc
Normal file
120
tensorflow/lite/delegates/xnnpack/logistic_test.cc
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(Logistic, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Logistic, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, width, channels})
|
||||||
|
.Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Logistic, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, channels})
|
||||||
|
.Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Logistic, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_LOGISTIC,
|
||||||
|
xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Logistic, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
120
tensorflow/lite/delegates/xnnpack/relu6_test.cc
Normal file
120
tensorflow/lite/delegates/xnnpack/relu6_test.cc
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(Relu6, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU6, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu6, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU6, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu6, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, channels})
|
||||||
|
.Test(BuiltinOperator_RELU6, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu6, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_RELU6,
|
||||||
|
xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu6, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU6, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
120
tensorflow/lite/delegates/xnnpack/relu_n1_to_1_test.cc
Normal file
120
tensorflow/lite/delegates/xnnpack/relu_n1_to_1_test.cc
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(ReluMinus1To1, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU_N1_TO_1, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(ReluMinus1To1, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU_N1_TO_1, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(ReluMinus1To1, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, channels})
|
||||||
|
.Test(BuiltinOperator_RELU_N1_TO_1, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(ReluMinus1To1, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_RELU_N1_TO_1,
|
||||||
|
xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(ReluMinus1To1, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU_N1_TO_1, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
120
tensorflow/lite/delegates/xnnpack/relu_test.cc
Normal file
120
tensorflow/lite/delegates/xnnpack/relu_test.cc
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(Relu, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, channels})
|
||||||
|
.Test(BuiltinOperator_RELU, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_RELU,
|
||||||
|
xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Relu, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
UnaryElementwiseTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(BuiltinOperator_RELU, xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
154
tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.cc
Normal file
154
tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.cc
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
||||||
|
|
||||||
|
#include <array>
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <numeric>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||||
|
#include "tensorflow/lite/interpreter.h"
|
||||||
|
#include "tensorflow/lite/kernels/register.h"
|
||||||
|
#include "tensorflow/lite/model.h"
|
||||||
|
#include "tensorflow/lite/schema/schema_generated.h"
|
||||||
|
#include "tensorflow/lite/version.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
void UnaryElementwiseTester::Test(tflite::BuiltinOperator unary_op,
|
||||||
|
TfLiteDelegate* delegate) const {
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto input_rng = std::bind(
|
||||||
|
std::uniform_real_distribution<float>(-15.0f, 15.0f), std::ref(rng));
|
||||||
|
|
||||||
|
std::vector<char> buffer = CreateTfLiteModel(unary_op);
|
||||||
|
const Model* model = GetModel(buffer.data());
|
||||||
|
|
||||||
|
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||||
|
ASSERT_EQ(
|
||||||
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||||
|
&delegate_interpreter),
|
||||||
|
kTfLiteOk);
|
||||||
|
std::unique_ptr<Interpreter> default_interpreter;
|
||||||
|
ASSERT_EQ(
|
||||||
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||||
|
&default_interpreter),
|
||||||
|
kTfLiteOk);
|
||||||
|
|
||||||
|
ASSERT_TRUE(delegate_interpreter);
|
||||||
|
ASSERT_TRUE(default_interpreter);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||||
|
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||||
|
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||||
|
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||||
|
|
||||||
|
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||||
|
default_interpreter->inputs()[0]);
|
||||||
|
std::generate(default_input_data, default_input_data + Size(),
|
||||||
|
std::ref(input_rng));
|
||||||
|
|
||||||
|
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
||||||
|
delegate_interpreter->inputs()[0]);
|
||||||
|
std::copy(default_input_data, default_input_data + Size(),
|
||||||
|
delegate_input_data);
|
||||||
|
|
||||||
|
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||||
|
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||||
|
|
||||||
|
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||||
|
default_interpreter->outputs()[0]);
|
||||||
|
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
||||||
|
delegate_interpreter->outputs()[0]);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < Size(); i++) {
|
||||||
|
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
|
||||||
|
std::numeric_limits<float>::epsilon() *
|
||||||
|
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<char> UnaryElementwiseTester::CreateTfLiteModel(
|
||||||
|
tflite::BuiltinOperator unary_op) const {
|
||||||
|
flatbuffers::FlatBufferBuilder builder;
|
||||||
|
flatbuffers::Offset<OperatorCode> operator_code =
|
||||||
|
CreateOperatorCode(builder, unary_op);
|
||||||
|
|
||||||
|
const std::array<flatbuffers::Offset<Buffer>, 1> buffers{{
|
||||||
|
CreateBuffer(builder, builder.CreateVector({})),
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<flatbuffers::Offset<Tensor>, 2> tensors{{
|
||||||
|
CreateTensor(
|
||||||
|
builder,
|
||||||
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||||
|
TensorType_FLOAT32),
|
||||||
|
CreateTensor(
|
||||||
|
builder,
|
||||||
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||||
|
TensorType_FLOAT32),
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<int32_t, 1> op_inputs{{0}};
|
||||||
|
const std::array<int32_t, 1> op_outputs{{1}};
|
||||||
|
flatbuffers::Offset<Operator> op = CreateOperator(
|
||||||
|
builder, /*opcode_index=*/0,
|
||||||
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||||
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
|
||||||
|
|
||||||
|
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
||||||
|
const std::array<int32_t, 1> subgraph_outputs{{1}};
|
||||||
|
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||||
|
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||||
|
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||||
|
subgraph_inputs.size()),
|
||||||
|
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||||
|
subgraph_outputs.size()),
|
||||||
|
builder.CreateVector(&op, 1));
|
||||||
|
|
||||||
|
flatbuffers::Offset<flatbuffers::String> description =
|
||||||
|
builder.CreateString("Unary operator model");
|
||||||
|
|
||||||
|
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||||
|
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||||
|
builder.CreateVector(&subgraph, 1), description,
|
||||||
|
builder.CreateVector(buffers.data(), buffers.size()));
|
||||||
|
|
||||||
|
builder.Finish(model_buffer);
|
||||||
|
|
||||||
|
return std::vector<char>(builder.GetBufferPointer(),
|
||||||
|
builder.GetBufferPointer() + builder.GetSize());
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t UnaryElementwiseTester::ComputeSize(const std::vector<int32_t>& shape) {
|
||||||
|
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
||||||
|
std::multiplies<int32_t>());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
68
tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h
Normal file
68
tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_UNARY_ELEMENTWISE_TESTER_H_
|
||||||
|
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_UNARY_ELEMENTWISE_TESTER_H_
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||||
|
#include "tensorflow/lite/interpreter.h"
|
||||||
|
#include "tensorflow/lite/kernels/register.h"
|
||||||
|
#include "tensorflow/lite/model.h"
|
||||||
|
#include "tensorflow/lite/schema/schema_generated.h"
|
||||||
|
#include "tensorflow/lite/version.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
class UnaryElementwiseTester {
|
||||||
|
public:
|
||||||
|
UnaryElementwiseTester() = default;
|
||||||
|
UnaryElementwiseTester(const UnaryElementwiseTester&) = delete;
|
||||||
|
UnaryElementwiseTester& operator=(const UnaryElementwiseTester&) = delete;
|
||||||
|
|
||||||
|
inline UnaryElementwiseTester& Shape(std::initializer_list<int32_t> shape) {
|
||||||
|
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||||
|
EXPECT_GT(*it, 0);
|
||||||
|
}
|
||||||
|
shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||||
|
size_ = UnaryElementwiseTester::ComputeSize(shape_);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::vector<int32_t>& Shape() const { return shape_; }
|
||||||
|
|
||||||
|
int32_t Size() const { return size_; }
|
||||||
|
|
||||||
|
void Test(tflite::BuiltinOperator unary_op, TfLiteDelegate* delegate) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::vector<char> CreateTfLiteModel(tflite::BuiltinOperator unary_op) const;
|
||||||
|
|
||||||
|
static int32_t ComputeSize(const std::vector<int32_t>& shape);
|
||||||
|
|
||||||
|
std::vector<int32_t> shape_;
|
||||||
|
int32_t size_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
||||||
|
|
||||||
|
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_UNARY_ELEMENTWISE_TESTER_H_
|
Loading…
Reference in New Issue
Block a user