Remove unused "sess" variables from tests; NFC
PiperOrigin-RevId: 357594586 Change-Id: Ia8c8274d12181aa59f2c46f8d7c8c3599aaffe74
This commit is contained in:
parent
1859e99359
commit
0d2c3d19ac
@ -462,7 +462,7 @@ class FunctionTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testWhileLoopCallsFunc(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
|
||||
@function.Defun(dtypes.float32)
|
||||
def Times2(x):
|
||||
|
@ -58,7 +58,7 @@ class AddNTest(test.TestCase):
|
||||
|
||||
def testAddN(self):
|
||||
np.random.seed(12345)
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
for dtype in self._supported_types():
|
||||
for count in range(1, self._MAX_N + 1):
|
||||
data = [self._buildData((2, 2), dtype) for _ in range(count)]
|
||||
|
@ -211,7 +211,7 @@ class StatefulScatterNdTest(test.TestCase):
|
||||
scatter = state_ops.scatter_nd_update(ref, indices, updates)
|
||||
init = variables.global_variables_initializer()
|
||||
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.evaluate(init)
|
||||
result = self.evaluate(scatter)
|
||||
self.assertAllClose(result, expected)
|
||||
@ -225,7 +225,7 @@ class StatefulScatterNdTest(test.TestCase):
|
||||
scatter = state_ops.scatter_nd_update(ref, indices, updates)
|
||||
init = variables.global_variables_initializer()
|
||||
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.evaluate(init)
|
||||
result = self.evaluate(scatter)
|
||||
self.assertAllClose(result, expected)
|
||||
|
@ -1001,7 +1001,7 @@ class StridedSliceGradTest(test_util.TensorFlowTestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testInt64Indices(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
a = math_ops.range(3, dtype=dtypes.float32)
|
||||
index = constant_op.constant(1, dtype=dtypes.int64)
|
||||
b = 2. * a[index]
|
||||
|
@ -40,13 +40,13 @@ from tensorflow.python.platform import test
|
||||
class GPUBinaryOpsTest(test.TestCase):
|
||||
|
||||
def _compareGPU(self, x, y, np_func, tf_func):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
inx = ops.convert_to_tensor(x)
|
||||
iny = ops.convert_to_tensor(y)
|
||||
out = tf_func(inx, iny)
|
||||
tf_gpu = self.evaluate(out)
|
||||
|
||||
with self.cached_session(use_gpu=False) as sess:
|
||||
with self.cached_session(use_gpu=False):
|
||||
inx = ops.convert_to_tensor(x)
|
||||
iny = ops.convert_to_tensor(y)
|
||||
out = tf_func(inx, iny)
|
||||
@ -143,7 +143,7 @@ class MathBuiltinUnaryTest(test.TestCase):
|
||||
|
||||
np_out = np.floor_divide(x, y + 0.1)
|
||||
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
inx = ops.convert_to_tensor(x)
|
||||
iny = ops.convert_to_tensor(y + 0.1)
|
||||
ofunc = inx / iny
|
||||
|
@ -36,7 +36,7 @@ class BucketizationOpTest(test.TestCase):
|
||||
constant_op.constant([-5, 0, 2, 3, 5, 8, 10, 11, 12]),
|
||||
boundaries=[0, 3, 8, 11])
|
||||
expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.assertAllEqual(expected_out, self.evaluate(op))
|
||||
|
||||
def testEmptyFloat(self):
|
||||
@ -51,7 +51,7 @@ class BucketizationOpTest(test.TestCase):
|
||||
constant_op.constant([-5., 0., 2., 3., 5., 8., 10., 11., 12.]),
|
||||
boundaries=[0., 3., 8., 11.])
|
||||
expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.assertAllEqual(expected_out, self.evaluate(op))
|
||||
|
||||
def test2DInput(self):
|
||||
@ -59,14 +59,14 @@ class BucketizationOpTest(test.TestCase):
|
||||
constant_op.constant([[-5, 0, 2, 3, 5], [8, 10, 11, 12, 0]]),
|
||||
boundaries=[0, 3, 8, 11])
|
||||
expected_out = [[0, 1, 1, 2, 2], [3, 3, 4, 4, 1]]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.assertAllEqual(expected_out, self.evaluate(op))
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testInvalidBoundariesOrder(self):
|
||||
op = math_ops._bucketize(
|
||||
constant_op.constant([-5, 0]), boundaries=[0, 8, 3, 11])
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
|
||||
"Expected sorted boundaries"):
|
||||
self.evaluate(op)
|
||||
|
@ -176,7 +176,7 @@ class ClipTest(test.TestCase):
|
||||
|
||||
def _testClipIndexedSlicesByValue(self, values, indices, shape,
|
||||
clip_value_min, clip_value_max, expected):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
values = constant_op.constant(values)
|
||||
indices = constant_op.constant(indices)
|
||||
shape = constant_op.constant(shape)
|
||||
|
@ -2787,7 +2787,7 @@ class SeparableConv2DTest(test.TestCase):
|
||||
expected: An array containing the expected operation outputs.
|
||||
data_format: string data format for input tensor.
|
||||
"""
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
t1 = self._InitValues(tensor_in_sizes)
|
||||
f1 = self._InitValues(depthwise_filter_in_sizes)
|
||||
f1.set_shape(depthwise_filter_in_sizes)
|
||||
|
@ -37,7 +37,7 @@ class DecodeImageOpTest(test.TestCase):
|
||||
def testBmp(self):
|
||||
# Read a real bmp and verify shape
|
||||
path = os.path.join(prefix_path, "bmp", "testdata", "lena.bmp")
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
bmp0 = io_ops.read_file(path)
|
||||
image0 = image_ops.decode_image(bmp0)
|
||||
image1 = image_ops.decode_bmp(bmp0)
|
||||
@ -53,7 +53,7 @@ class DecodeImageOpTest(test.TestCase):
|
||||
stride = 5
|
||||
shape = (12, height, width, 3)
|
||||
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
gif0 = io_ops.read_file(path)
|
||||
image0 = image_ops.decode_image(gif0)
|
||||
image1 = image_ops.decode_gif(gif0)
|
||||
@ -82,7 +82,7 @@ class DecodeImageOpTest(test.TestCase):
|
||||
def testJpeg(self):
|
||||
# Read a real jpeg and verify shape
|
||||
path = os.path.join(prefix_path, "jpeg", "testdata", "jpeg_merge_test1.jpg")
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
jpeg0 = io_ops.read_file(path)
|
||||
image0 = image_ops.decode_image(jpeg0)
|
||||
image1 = image_ops.decode_jpeg(jpeg0)
|
||||
|
@ -154,7 +154,7 @@ class DeterminantOpTest(test.TestCase):
|
||||
|
||||
@test_util.run_v1_only("b/120545219")
|
||||
def testConcurrentExecutesWithoutError(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
det1 = linalg_ops.matrix_determinant(matrix1)
|
||||
|
@ -39,7 +39,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testSimpleOneDimensional(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant([0, 13, 2, 39, 4, 17], dtype=dtypes.float32)
|
||||
indices = constant_op.constant([0, 0, 2, 3, 2, 1])
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -60,7 +60,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testSimpleTwoDimensional(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11],
|
||||
[12, 13, 14], [15, 16, 17]],
|
||||
dtype=dtypes.float32)
|
||||
@ -87,7 +87,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
indices_list = [x % 2 for x in range(num)]
|
||||
part1 = [x for x in range(num) if x % 2 == 0]
|
||||
part2 = [x for x in range(num) if x % 2 == 1]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -109,7 +109,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
parts = [[] for _ in range(num_partitions)]
|
||||
for i in range(rows):
|
||||
parts[(i ** 2) % num_partitions].append(data_list[i])
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -125,7 +125,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
def testSimpleComplex(self):
|
||||
data_list = [1 + 2j, 3 + 4j, 5 + 6j, 7 + 8j]
|
||||
indices_list = [1, 0, 1, 0]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.complex64)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -138,7 +138,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
def testScalarPartitions(self):
|
||||
data_list = [10, 13, 12, 11]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float64)
|
||||
indices = 3
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -184,7 +184,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
def testEmptyParts(self):
|
||||
data_list = [1, 2, 3, 4]
|
||||
indices_list = [1, 3, 1, 3]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -200,7 +200,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
def testEmptyDataTwoDimensional(self):
|
||||
data_list = [[], []]
|
||||
indices_list = [0, 1]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -216,7 +216,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
def testEmptyPartitions(self):
|
||||
data_list = []
|
||||
indices_list = []
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -237,7 +237,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
data_list = [1, 2, 3, 4, 5, 6]
|
||||
indices_list = [6, 5, 4, 3, 1, 0]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -258,7 +258,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
data_list = [1, 2, 3, 4, 5, 6]
|
||||
indices_list = [10, 11, 2, 12, 0, 1000]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -282,7 +282,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
data_list = [1.1, 2.1, 3.1, 4.1, 5.1, 6.1]
|
||||
indices_list = [90, 70, 60, 100, 110, 40]
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
data = constant_op.constant(data_list, dtype=dtypes.float32)
|
||||
indices = constant_op.constant(indices_list, dtype=dtypes.int32)
|
||||
partitions = data_flow_ops.dynamic_partition(
|
||||
@ -295,7 +295,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testErrorIndexOutOfRange(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
data = constant_op.constant([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11],
|
||||
[12, 13, 14]])
|
||||
indices = constant_op.constant([0, 2, 99, 2, 2])
|
||||
@ -346,7 +346,7 @@ class DynamicPartitionTest(test.TestCase):
|
||||
inds += [13]*194 + [14]*194 + [15]*192
|
||||
self.assertEqual(len(inds), x.shape[0])
|
||||
partitioned = data_flow_ops.dynamic_partition(x, inds, 16)
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
res = self.evaluate(partitioned)
|
||||
self.assertEqual(res[-1].shape[0], 192)
|
||||
|
||||
|
@ -55,7 +55,7 @@ class EigTest(test.TestCase):
|
||||
@test_util.run_deprecated_v1
|
||||
def testConcurrentExecutesWithoutError(self):
|
||||
all_ops = []
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
for compute_v_ in True, False:
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
|
@ -340,7 +340,7 @@ class FunctionalOpsTest(test.TestCase):
|
||||
lambda elem_, input_: (a, b), elems, initializer=(0., 0.))
|
||||
loss = l0 + array_ops.stop_gradient(l1)
|
||||
grad = gradients_impl.gradients(ys=[loss], xs=[a, b])
|
||||
with self.test_session() as sess:
|
||||
with self.test_session():
|
||||
self.evaluate(variables.global_variables_initializer())
|
||||
self.evaluate(grad)
|
||||
|
||||
|
@ -910,7 +910,7 @@ class ConvolutionDeltaOrthogonalInitializerTest(test.TestCase):
|
||||
outputs_2norm = linalg_ops.norm(outputs)
|
||||
ratio = outputs_2norm / inputs_2norm
|
||||
my_ops = variables.global_variables_initializer()
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.evaluate(my_ops)
|
||||
# Check the shape of the outputs
|
||||
t = self.evaluate(outputs)
|
||||
@ -1063,7 +1063,7 @@ class ConvolutionOrthogonal1dInitializerTest(test.TestCase):
|
||||
outputs_2norm = linalg_ops.norm(outputs)
|
||||
ratio = outputs_2norm / inputs_2norm
|
||||
my_ops = variables.global_variables_initializer()
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.evaluate(my_ops)
|
||||
# Check the shape of the outputs
|
||||
t = self.evaluate(outputs)
|
||||
@ -1167,7 +1167,7 @@ class ConvolutionOrthogonal2dInitializerTest(test.TestCase):
|
||||
outputs_2norm = linalg_ops.norm(outputs)
|
||||
ratio = outputs_2norm / inputs_2norm
|
||||
my_ops = variables.global_variables_initializer()
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.evaluate(my_ops)
|
||||
# Check the shape of the outputs
|
||||
t = self.evaluate(outputs)
|
||||
@ -1302,7 +1302,7 @@ class ConvolutionOrthogonal3dInitializerTest(test.TestCase):
|
||||
outputs_2norm = linalg_ops.norm(outputs)
|
||||
ratio = outputs_2norm / inputs_2norm
|
||||
my_ops = variables.global_variables_initializer()
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
self.evaluate(my_ops)
|
||||
# Check the shape of the outputs
|
||||
t = self.evaluate(outputs)
|
||||
|
@ -157,7 +157,7 @@ class ExponentialOpTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testConcurrentExecutesWithoutError(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
expm1 = linalg_impl.matrix_exponential(matrix1)
|
||||
|
@ -34,7 +34,7 @@ class MultinomialTest(test.TestCase):
|
||||
def testLargeDynamicRange(self):
|
||||
random_seed.set_random_seed(10)
|
||||
counts_by_indices = {}
|
||||
with self.test_session() as sess:
|
||||
with self.test_session():
|
||||
samples = random_ops.multinomial(
|
||||
constant_op.constant([[-30, 0]], dtype=dtypes.float32),
|
||||
num_samples=1000000,
|
||||
@ -52,7 +52,7 @@ class MultinomialTest(test.TestCase):
|
||||
def testLargeDynamicRange2(self):
|
||||
random_seed.set_random_seed(10)
|
||||
counts_by_indices = {}
|
||||
with self.test_session() as sess:
|
||||
with self.test_session():
|
||||
samples = random_ops.multinomial(
|
||||
constant_op.constant([[0, -30]], dtype=dtypes.float32),
|
||||
num_samples=1000000,
|
||||
@ -72,7 +72,7 @@ class MultinomialTest(test.TestCase):
|
||||
random_seed.set_random_seed(10)
|
||||
counts_by_indices = {}
|
||||
# here the cpu undersamples and won't pass this test either
|
||||
with self.test_session() as sess:
|
||||
with self.test_session():
|
||||
samples = random_ops.multinomial(
|
||||
constant_op.constant([[0, -17]], dtype=dtypes.float32),
|
||||
num_samples=1000000,
|
||||
|
@ -208,7 +208,7 @@ class SumReductionTest(BaseReductionTest):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
v = math_ops.reduce_sum([0, 0], constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
self.assertAllEqual(tf_v, 0)
|
||||
@ -446,7 +446,7 @@ class MeanReductionTest(BaseReductionTest):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
self.assertAllEqual(tf_v, 0)
|
||||
@ -640,7 +640,7 @@ class ProdReductionTest(BaseReductionTest):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
self.assertAllEqual(tf_v, 0)
|
||||
@ -750,7 +750,7 @@ class MinReductionTest(test.TestCase):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
v = math_ops.reduce_min([0, 0], constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
self.assertAllEqual(tf_v, 0)
|
||||
@ -866,7 +866,7 @@ class MaxReductionTest(test.TestCase):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
v = math_ops.reduce_max([0, 0], constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
self.assertAllEqual(tf_v, 0)
|
||||
@ -998,7 +998,7 @@ class AllReductionTest(test.TestCase):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
v = math_ops.reduce_all([True, True],
|
||||
constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
@ -1047,7 +1047,7 @@ class AnyReductionTest(test.TestCase):
|
||||
|
||||
def testAxesType(self):
|
||||
for dtype in [dtypes.int64, dtypes.int32]:
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
v = math_ops.reduce_any([True, True],
|
||||
constant_op.constant(0, dtype=dtype))
|
||||
tf_v = self.evaluate(v)
|
||||
|
@ -55,7 +55,7 @@ class SelfAdjointEigTest(test.TestCase):
|
||||
@test_util.run_deprecated_v1
|
||||
def testConcurrentExecutesWithoutError(self):
|
||||
all_ops = []
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
for compute_v_ in True, False:
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
@ -84,7 +84,7 @@ class SelfAdjointEigTest(test.TestCase):
|
||||
"self_adjoint_eig_fail_if_denorms_flushed.txt")).astype(np.float32)
|
||||
self.assertEqual(matrix.shape, (32, 32))
|
||||
matrix_tensor = constant_op.constant(matrix)
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
(e, v) = self.evaluate(linalg_ops.self_adjoint_eig(matrix_tensor))
|
||||
self.assertEqual(e.size, 32)
|
||||
self.assertAllClose(
|
||||
|
@ -64,7 +64,7 @@ class SparseXentTest(test.TestCase):
|
||||
|
||||
def _testXent(self, np_features, np_labels):
|
||||
np_loss, np_backprop = self._npXent(np_features, np_labels)
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
loss, backprop = gen_nn_ops.sparse_softmax_cross_entropy_with_logits(
|
||||
np_features, np_labels)
|
||||
tf_loss, tf_backprop = self.evaluate([loss, backprop])
|
||||
@ -73,7 +73,7 @@ class SparseXentTest(test.TestCase):
|
||||
|
||||
def testSingleClass(self):
|
||||
for label_dtype in np.int32, np.int64:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
loss, backprop = gen_nn_ops.sparse_softmax_cross_entropy_with_logits(
|
||||
np.array([[1.], [-1.], [0.]]).astype(np.float32),
|
||||
np.array([0, 0, 0]).astype(label_dtype))
|
||||
|
@ -801,7 +801,7 @@ class TensorArrayTest(test.TestCase):
|
||||
self._testTensorArrayGradientWriteReadType(dtype)
|
||||
|
||||
def _testTensorArrayGradientWritePackConcatAndRead(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
ta = tensor_array_ops.TensorArray(
|
||||
dtype=dtypes.float32,
|
||||
tensor_array_name="foo",
|
||||
@ -1371,7 +1371,7 @@ class TensorArrayTest(test.TestCase):
|
||||
self.assertAllEqual(grad_r0_x1_vals, [1.0, 0.0])
|
||||
|
||||
def _testTensorArrayUnpackDynamic(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
ta = tensor_array_ops.TensorArray(
|
||||
dtype=dtypes.float32, size=3, dynamic_size=True)
|
||||
x = constant_op.constant([1.0, 2.0, 3.0])
|
||||
@ -1388,7 +1388,7 @@ class TensorArrayTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testSkipEagerTensorArraySplitDynamic(self):
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
ta = tensor_array_ops.TensorArray(
|
||||
dtype=dtypes.float32, size=3, dynamic_size=True)
|
||||
x = constant_op.constant([1.0, 2.0, 3.0])
|
||||
@ -1771,7 +1771,7 @@ class TensorArrayTest(test.TestCase):
|
||||
# dy is outside of the gradients name scope; tf.gradients must
|
||||
# wrap it in the correct name scope.
|
||||
dx, = gradients_impl.gradients(ys=[y], xs=[x], grad_ys=[dy])
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
vdx, vdy = self.evaluate([dx, dy])
|
||||
self.assertAllClose(vdx, vdy)
|
||||
|
||||
|
@ -47,7 +47,7 @@ class TopKTest(test.TestCase):
|
||||
sorted=True): # pylint: disable=redefined-builtin
|
||||
np_expected_values = np.array(expected_values)
|
||||
np_expected_indices = np.array(expected_indices)
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted)
|
||||
values, indices = self.evaluate([values_op, indices_op])
|
||||
|
||||
|
@ -319,7 +319,7 @@ class XentTest(test.TestCase):
|
||||
features = np.zeros([0, 2, 4]).astype(np.float32)
|
||||
labels = np.zeros([0, 2, 4]).astype(np.float32)
|
||||
np_loss, _ = self._npXent(features, labels)
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
loss = nn_ops.softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=features)
|
||||
tf_loss = self.evaluate(loss)
|
||||
|
@ -62,7 +62,7 @@ class BitwiseOpTest(test_util.TensorFlowTestCase):
|
||||
def count_bits(x):
|
||||
return sum(bin(z).count("1") for z in six.iterbytes(x.tobytes()))
|
||||
for dtype in dtype_list:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
print("PopulationCount test: ", dtype)
|
||||
inputs = np.array(raw_inputs, dtype=dtype.as_numpy_dtype)
|
||||
truth = [count_bits(x) for x in inputs]
|
||||
|
@ -444,7 +444,7 @@ class CropAndResizeOpTestBase(test.TestCase):
|
||||
constant_op.constant(boxes, shape=[num_boxes, 4]),
|
||||
constant_op.constant(box_ind, shape=[num_boxes]),
|
||||
constant_op.constant(crop_size, shape=[2]))
|
||||
with self.session() as sess:
|
||||
with self.session():
|
||||
self.assertEqual(crops_shape, list(crops.get_shape()))
|
||||
crops = self.evaluate(crops)
|
||||
self.assertEqual(crops_shape, list(crops.shape))
|
||||
|
@ -71,7 +71,7 @@ class RGBToHSVTest(test_util.TensorFlowTestCase):
|
||||
inp = np.random.rand(*shape).astype(nptype)
|
||||
|
||||
# Convert to HSV and back, as a batch and individually
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
batch0 = constant_op.constant(inp)
|
||||
batch1 = image_ops.rgb_to_hsv(batch0)
|
||||
batch2 = image_ops.hsv_to_rgb(batch1)
|
||||
@ -113,7 +113,7 @@ class RGBToYIQTest(test_util.TensorFlowTestCase):
|
||||
inp = np.random.rand(*shape).astype(nptype)
|
||||
|
||||
# Convert to YIQ and back, as a batch and individually
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
batch0 = constant_op.constant(inp)
|
||||
batch1 = image_ops.rgb_to_yiq(batch0)
|
||||
batch2 = image_ops.yiq_to_rgb(batch1)
|
||||
@ -145,7 +145,7 @@ class RGBToYUVTest(test_util.TensorFlowTestCase):
|
||||
inp = np.random.rand(*shape).astype(nptype)
|
||||
|
||||
# Convert to YUV and back, as a batch and individually
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
batch0 = constant_op.constant(inp)
|
||||
batch1 = image_ops.rgb_to_yuv(batch0)
|
||||
batch2 = image_ops.yuv_to_rgb(batch1)
|
||||
@ -3199,7 +3199,7 @@ class ResizeImagesTest(test_util.TensorFlowTestCase,
|
||||
img_np = np.array(data, dtype=nptype).reshape(img_shape)
|
||||
|
||||
for method in self.METHODS:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
image = constant_op.constant(img_np, shape=img_shape)
|
||||
y = image_ops.resize_images(image, [target_height, target_width],
|
||||
method)
|
||||
@ -4176,7 +4176,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
# Read a real jpeg and verify shape
|
||||
path = ("tensorflow/core/lib/jpeg/testdata/"
|
||||
"jpeg_merge_test1.jpg")
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
jpeg0 = io_ops.read_file(path)
|
||||
image0 = image_ops.decode_jpeg(jpeg0)
|
||||
image1 = image_ops.decode_jpeg(image_ops.encode_jpeg(image0))
|
||||
@ -4192,7 +4192,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
cmyk_path = os.path.join(base, "jpeg_merge_test1_cmyk.jpg")
|
||||
shape = 256, 128, 3
|
||||
for channels in 3, 0:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
rgb = image_ops.decode_jpeg(
|
||||
io_ops.read_file(rgb_path), channels=channels)
|
||||
cmyk = image_ops.decode_jpeg(
|
||||
@ -4248,7 +4248,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
self.evaluate(result)
|
||||
|
||||
def testSynthetic(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Encode it, then decode it, then encode it
|
||||
image0 = constant_op.constant(simple_color_ramp())
|
||||
jpeg0 = image_ops.encode_jpeg(image0)
|
||||
@ -4269,7 +4269,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
self.assertLessEqual(len(jpeg0), 6000)
|
||||
|
||||
def testSyntheticFasterAlgorithm(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Encode it, then decode it, then encode it
|
||||
image0 = constant_op.constant(simple_color_ramp())
|
||||
jpeg0 = image_ops.encode_jpeg(image0)
|
||||
@ -4293,7 +4293,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
self.assertLessEqual(len(jpeg0), 6000)
|
||||
|
||||
def testDefaultDCTMethodIsIntegerFast(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Compare decoding with both dct_option=INTEGER_FAST and
|
||||
# default. They should be the same.
|
||||
image0 = constant_op.constant(simple_color_ramp())
|
||||
@ -4308,7 +4308,7 @@ class JpegTest(test_util.TensorFlowTestCase):
|
||||
def testShape(self):
|
||||
# Shape function requires placeholders and a graph.
|
||||
with ops.Graph().as_default():
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
jpeg = constant_op.constant("nonsense")
|
||||
for channels in 0, 1, 3:
|
||||
image = image_ops.decode_jpeg(jpeg, channels=channels)
|
||||
@ -4418,7 +4418,7 @@ class PngTest(test_util.TensorFlowTestCase):
|
||||
(3, "lena_palette.png"), (4, "lena_palette_trns.png"))
|
||||
for channels_in, filename in inputs:
|
||||
for channels in 0, 1, 3, 4:
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
png0 = io_ops.read_file(prefix + filename)
|
||||
image0 = image_ops.decode_png(png0, channels=channels)
|
||||
png0, image0 = self.evaluate([png0, image0])
|
||||
@ -4428,7 +4428,7 @@ class PngTest(test_util.TensorFlowTestCase):
|
||||
self.assertAllEqual(image0, self.evaluate(image1))
|
||||
|
||||
def testSynthetic(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Encode it, then decode it
|
||||
image0 = constant_op.constant(simple_color_ramp())
|
||||
png0 = image_ops.encode_png(image0, compression=7)
|
||||
@ -4443,7 +4443,7 @@ class PngTest(test_util.TensorFlowTestCase):
|
||||
self.assertLessEqual(len(png0), 750)
|
||||
|
||||
def testSyntheticUint16(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Encode it, then decode it
|
||||
image0 = constant_op.constant(simple_color_ramp(), dtype=dtypes.uint16)
|
||||
png0 = image_ops.encode_png(image0, compression=7)
|
||||
@ -4458,7 +4458,7 @@ class PngTest(test_util.TensorFlowTestCase):
|
||||
self.assertLessEqual(len(png0), 1500)
|
||||
|
||||
def testSyntheticTwoChannel(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Strip the b channel from an rgb image to get a two-channel image.
|
||||
gray_alpha = simple_color_ramp()[:, :, 0:2]
|
||||
image0 = constant_op.constant(gray_alpha)
|
||||
@ -4469,7 +4469,7 @@ class PngTest(test_util.TensorFlowTestCase):
|
||||
self.assertAllEqual(image0, image1)
|
||||
|
||||
def testSyntheticTwoChannelUint16(self):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
# Strip the b channel from an rgb image to get a two-channel image.
|
||||
gray_alpha = simple_color_ramp()[:, :, 0:2]
|
||||
image0 = constant_op.constant(gray_alpha, dtype=dtypes.uint16)
|
||||
@ -4500,7 +4500,7 @@ class GifTest(test_util.TensorFlowTestCase):
|
||||
STRIDE = 5
|
||||
shape = (12, HEIGHT, WIDTH, 3)
|
||||
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
gif0 = io_ops.read_file(prefix + filename)
|
||||
image0 = image_ops.decode_gif(gif0)
|
||||
gif0, image0 = self.evaluate([gif0, image0])
|
||||
@ -4528,7 +4528,7 @@ class GifTest(test_util.TensorFlowTestCase):
|
||||
def testShape(self):
|
||||
# Shape function requires placeholders and a graph.
|
||||
with ops.Graph().as_default():
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
gif = constant_op.constant("nonsense")
|
||||
image = image_ops.decode_gif(gif)
|
||||
self.assertEqual(image.get_shape().as_list(), [None, None, None, 3])
|
||||
@ -5842,7 +5842,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testJpegUint16(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/jpeg/testdata"
|
||||
jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg"))
|
||||
image0 = image_ops.decode_image(jpeg0, dtype=dtypes.uint16)
|
||||
@ -5854,7 +5854,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testPngUint16(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/png/testdata"
|
||||
png0 = io_ops.read_file(os.path.join(base, "lena_rgba.png"))
|
||||
image0 = image_ops.decode_image(png0, dtype=dtypes.uint16)
|
||||
@ -5873,7 +5873,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testGifUint16(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/gif/testdata"
|
||||
gif0 = io_ops.read_file(os.path.join(base, "scan.gif"))
|
||||
image0 = image_ops.decode_image(gif0, dtype=dtypes.uint16)
|
||||
@ -5885,7 +5885,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testBmpUint16(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/bmp/testdata"
|
||||
bmp0 = io_ops.read_file(os.path.join(base, "lena.bmp"))
|
||||
image0 = image_ops.decode_image(bmp0, dtype=dtypes.uint16)
|
||||
@ -5897,7 +5897,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testJpegFloat32(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/jpeg/testdata"
|
||||
jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg"))
|
||||
image0 = image_ops.decode_image(jpeg0, dtype=dtypes.float32)
|
||||
@ -5909,7 +5909,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testPngFloat32(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/png/testdata"
|
||||
png0 = io_ops.read_file(os.path.join(base, "lena_rgba.png"))
|
||||
image0 = image_ops.decode_image(png0, dtype=dtypes.float32)
|
||||
@ -5921,7 +5921,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testGifFloat32(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/gif/testdata"
|
||||
gif0 = io_ops.read_file(os.path.join(base, "scan.gif"))
|
||||
image0 = image_ops.decode_image(gif0, dtype=dtypes.float32)
|
||||
@ -5933,7 +5933,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testBmpFloat32(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/bmp/testdata"
|
||||
bmp0 = io_ops.read_file(os.path.join(base, "lena.bmp"))
|
||||
image0 = image_ops.decode_image(bmp0, dtype=dtypes.float32)
|
||||
@ -5945,7 +5945,7 @@ class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
||||
def testExpandAnimations(self):
|
||||
for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
|
||||
with compat.forward_compatibility_horizon(*horizon):
|
||||
with self.cached_session() as sess:
|
||||
with self.cached_session():
|
||||
base = "tensorflow/core/lib/gif/testdata"
|
||||
gif0 = io_ops.read_file(os.path.join(base, "scan.gif"))
|
||||
|
||||
|
@ -76,7 +76,7 @@ class NcclTestCase(test.TestCase):
|
||||
for dtype in [np.float16, np.float32, np.int32, np.int64, np.float64]:
|
||||
# Create session inside outer loop to test use of
|
||||
# same communicator across multiple sessions.
|
||||
with self.test_session() as sess:
|
||||
with self.test_session():
|
||||
|
||||
for devices in device_sets:
|
||||
shape = (3, 4)
|
||||
|
Loading…
Reference in New Issue
Block a user