diff --git a/tensorflow/python/data/benchmarks/list_files_benchmark.py b/tensorflow/python/data/benchmarks/list_files_benchmark.py
index 70f8eeec9e8..381fe4835ec 100644
--- a/tensorflow/python/data/benchmarks/list_files_benchmark.py
+++ b/tensorflow/python/data/benchmarks/list_files_benchmark.py
@@ -35,7 +35,7 @@ from tensorflow.python.platform import test
 class ListFilesBenchmark(test.Benchmark):
   """Benchmarks for `tf.data.Dataset.list_files()`."""
 
-  def benchmarkNestedDirectories(self):
+  def benchmark_nested_directories(self):
     tmp_dir = tempfile.mkdtemp()
     width = 1024
     depth = 16
diff --git a/tensorflow/python/data/benchmarks/meta_benchmark.py b/tensorflow/python/data/benchmarks/meta_benchmark.py
index c6d888b2df0..f03e6efa600 100644
--- a/tensorflow/python/data/benchmarks/meta_benchmark.py
+++ b/tensorflow/python/data/benchmarks/meta_benchmark.py
@@ -40,19 +40,19 @@ class MetaBenchmark(test.Benchmark):
     options.experimental_optimization.apply_default_optimizations = False
     return dataset_ops.Dataset.range(10000**2).with_options(options)
 
-  def benchmarkFastDatasetWithOnlyCppIterations(self):
+  def benchmark_fast_dataset_with_only_cpp_iterations(self):
     dataset = self.setup_fast_dataset()
     self.run_benchmark_with_only_cpp_iterations(dataset)
 
-  def benchmarkFastDatasetWithSessionRun(self):
+  def benchmark_fast_dataset_with_session_run(self):
     dataset = self.setup_fast_dataset()
     self.run_benchmark_with_session_run(dataset)
 
-  def benchmarkFastDatasetWithSessionCallable(self):
+  def benchmark_fast_dataset_with_session_callable(self):
     dataset = self.setup_fast_dataset()
     self.run_benchmark_with_session_run(dataset, make_callable=True)
 
-  def benchmarkFastDatasetInEager(self):
+  def benchmark_fast_dataset_in_eager(self):
     with context.eager_mode():
       dataset = self.setup_fast_dataset()
       self.run_benchmark_in_eager(dataset)
@@ -63,19 +63,19 @@ class MetaBenchmark(test.Benchmark):
     # sleep for 1e-3s per iteration
     return dataset.apply(sleep.sleep(1000))
 
-  def benchmarkSlowDatasetWithOnlyCppIterations(self):
+  def benchmark_slow_dataset_with_only_cpp_iterations(self):
     dataset = self.setup_slow_dataset()
     self.run_benchmark_with_only_cpp_iterations(dataset)
 
-  def benchmarkSlowDatasetWithSessionRun(self):
+  def benchmark_slow_dataset_with_session_run(self):
     dataset = self.setup_slow_dataset()
     self.run_benchmark_with_session_run(dataset)
 
-  def benchmarkSlowDatasetWithSessionCallable(self):
+  def benchmark_slow_dataset_with_session_callable(self):
     dataset = self.setup_slow_dataset()
     self.run_benchmark_with_session_run(dataset, make_callable=True)
 
-  def benchmarkSlowDatasetInEager(self):
+  def benchmark_slow_dataset_in_eager(self):
     with context.eager_mode():
       dataset = self.setup_slow_dataset()
       self.run_benchmark_in_eager(dataset)
diff --git a/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py b/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py
index e0e6f88cd04..33606847866 100644
--- a/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py
@@ -31,12 +31,12 @@ from tensorflow.python.platform import test
 class AutotuneBenchmark(test.Benchmark):
   """Benchmarks for autotuning performance knobs."""
 
-  def benchmarkMap(self):
-    a = self._benchmarkMap(autotune=False)
-    b = self._benchmarkMap(autotune=True)
+  def benchmark_map(self):
+    a = self._benchmark_map(autotune=False)
+    b = self._benchmark_map(autotune=True)
     print("speedup: %f" % (a / b))
 
-  def _benchmarkMap(self, autotune):
+  def _benchmark_map(self, autotune):
     k = 1024 * 1024
     dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k),
                                                 np.random.rand(4 * k,
@@ -66,12 +66,12 @@ class AutotuneBenchmark(test.Benchmark):
         name="map" + ("_autotune" if autotune else ""))
     return np.median(deltas)
 
-  def benchmarkMapAndBatch(self):
-    a = self._benchmarkMapAndBatch(autotune=False)
-    b = self._benchmarkMapAndBatch(autotune=True)
+  def benchmark_map_and_batch(self):
+    a = self._benchmark_map_and_batch(autotune=False)
+    b = self._benchmark_map_and_batch(autotune=True)
     print("speedup: %f" % (a / b))
 
-  def _benchmarkMapAndBatch(self, autotune):
+  def _benchmark_map_and_batch(self, autotune):
     batch_size = 16
     k = 1024 * 1024
     dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k),
@@ -104,12 +104,12 @@ class AutotuneBenchmark(test.Benchmark):
         name="map_and_batch" + ("_autotune" if autotune else ""))
     return np.median(deltas)
 
-  def benchmarkInterleave(self):
-    a = self._benchmarkInterleave(autotune=False)
-    b = self._benchmarkInterleave(autotune=True)
+  def benchmark_interleave(self):
+    a = self._benchmark_interleave(autotune=False)
+    b = self._benchmark_interleave(autotune=True)
     print("speedup: %f" % (a / b))
 
-  def _benchmarkInterleave(self, autotune):
+  def _benchmark_interleave(self, autotune):
     k = 1024 * 1024
     dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k),
                                                 np.random.rand(4 * k,
@@ -142,12 +142,12 @@ class AutotuneBenchmark(test.Benchmark):
         name="interleave" + ("_autotune" if autotune else ""))
     return np.median(deltas)
 
-  def benchmarkMapAndInterleave(self):
-    a = self._benchmarkMapAndInterleave(autotune=False)
-    b = self._benchmarkMapAndInterleave(autotune=True)
+  def benchmark_map_and_interleave(self):
+    a = self._benchmark_map_and_interleave(autotune=False)
+    b = self._benchmark_map_and_interleave(autotune=True)
     print("speedup: %f" % (a / b))
 
-  def _benchmarkMapAndInterleave(self, autotune):
+  def _benchmark_map_and_interleave(self, autotune):
     k = 1024 * 1024
     a = (np.random.rand(1, 8 * k), np.random.rand(8 * k, 1))
     b = (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))
diff --git a/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py b/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py
index 4a5a264c6f3..258c54dbe2f 100644
--- a/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py
@@ -31,7 +31,7 @@ from tensorflow.python.platform import test
 class ChooseFastestBenchmark(test.Benchmark):
   """Benchmarks for static optimizations."""
 
-  def benchmarkChooseFastest(self):
+  def benchmark_choose_fastest(self):
 
     dataset = dataset_ops.Dataset.range(1000**2).repeat()
     options = dataset_ops.Options()
@@ -46,7 +46,7 @@ class ChooseFastestBenchmark(test.Benchmark):
     self._benchmark(batch_map_dataset, "batch_map_dataset")
     self._benchmark(merge_dataset, "merge_dataset")
 
-  def benchmarkChooseFastestFirstNIterations(self):
+  def benchmark_choose_fastest_first_n_iterations(self):
 
     dataset = dataset_ops.Dataset.range(1000**2).repeat()
     options = dataset_ops.Options()
@@ -58,11 +58,11 @@ class ChooseFastestBenchmark(test.Benchmark):
     merge_dataset = optimization._ChooseFastestDataset(  # pylint: disable=protected-access
         [batch_map_dataset, map_batch_dataset])
 
-    self._benchmarkFirstN(map_batch_dataset, "map_batch_dataset")
-    self._benchmarkFirstN(batch_map_dataset, "batch_map_dataset")
-    self._benchmarkFirstN(merge_dataset, "merge_dataset")
+    self._benchmark_first_n(map_batch_dataset, "map_batch_dataset")
+    self._benchmark_first_n(batch_map_dataset, "batch_map_dataset")
+    self._benchmark_first_n(merge_dataset, "merge_dataset")
 
-  def _benchmarkFirstN(self, dataset, name):
+  def _benchmark_first_n(self, dataset, name):
     n = 10  # The default num_experiments for ChooseFastestDataset
     iterator = dataset_ops.make_one_shot_iterator(dataset)
     next_element = iterator.get_next()
diff --git a/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py
index e76235f8255..2b7761c1fca 100644
--- a/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py
@@ -53,7 +53,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase):
 
     return self.make_benchmark_datasets(dataset, branch_0, branch_1, 100)
 
-  def benchmarkChooseFastest(self):
+  def benchmark_choose_fastest(self):
     map_batch, batch_map, choose_fastest = self.make_simple_benchmark_datasets()
 
     def benchmark(dataset, name):
@@ -63,7 +63,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase):
     benchmark(batch_map, "batch_map_dataset")
     benchmark(choose_fastest, "choose_fastest_dataset")
 
-  def benchmarkChooseFastestFirstNIterations(self):
+  def benchmark_choose_fastest_first_n_iterations(self):
 
     map_batch, batch_map, choose_fastest = self.make_simple_benchmark_datasets()
 
@@ -75,7 +75,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase):
     benchmark(batch_map, "batch_map_dataset")
     benchmark(choose_fastest, "choose_fastest_dataset")
 
-  def benchmarkWithInputSkew(self):
+  def benchmark_with_input_skew(self):
 
     def make_dataset(time_us, num_elements):
       return dataset_ops.Dataset.range(num_elements).apply(sleep.sleep(time_us))
diff --git a/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py b/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py
index 2e91e08c79f..10bddb0ab83 100644
--- a/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py
@@ -41,7 +41,7 @@ class CsvDatasetBenchmark(test.Benchmark):
   FLOAT_VAL = '1.23456E12'
   STR_VAL = string.ascii_letters * 10
 
-  def _setUp(self, str_val):
+  def _set_up(self, str_val):
     # Since this isn't test.TestCase, have to manually create a test dir
     gfile.MakeDirs(googletest.GetTempDir())
     self._temp_dir = tempfile.mkdtemp(dir=googletest.GetTempDir())
@@ -58,10 +58,10 @@ class CsvDatasetBenchmark(test.Benchmark):
         f.write('\n'.join([row for _ in range(100)]))
       self._filenames.append(fn)
 
-  def _tearDown(self):
+  def _tear_down(self):
     gfile.DeleteRecursively(self._temp_dir)
 
-  def _runBenchmark(self, dataset, num_cols, prefix):
+  def _run_benchmark(self, dataset, num_cols, prefix):
     dataset = dataset.skip(self._num_per_iter - 1)
     options = dataset_ops.Options()
     options.experimental_optimization.apply_default_optimizations = False
@@ -87,45 +87,45 @@ class CsvDatasetBenchmark(test.Benchmark):
         wall_time=median_wall_time,
         name='%s_with_cols_%d' % (prefix, num_cols))
 
-  def benchmarkMapWithFloats(self):
-    self._setUp(self.FLOAT_VAL)
+  def benchmark_map_with_floats(self):
+    self._set_up(self.FLOAT_VAL)
     for i in range(len(self._filenames)):
       num_cols = self._num_cols[i]
       kwargs = {'record_defaults': [[0.0]] * num_cols}
       dataset = core_readers.TextLineDataset(self._filenames[i]).repeat()
       dataset = dataset.map(lambda l: parsing_ops.decode_csv(l, **kwargs))  # pylint: disable=cell-var-from-loop
-      self._runBenchmark(dataset, num_cols, 'csv_float_map_decode_csv')
-    self._tearDown()
+      self._run_benchmark(dataset, num_cols, 'csv_float_map_decode_csv')
+    self._tear_down()
 
-  def benchmarkMapWithStrings(self):
-    self._setUp(self.STR_VAL)
+  def benchmark_map_with_strings(self):
+    self._set_up(self.STR_VAL)
     for i in range(len(self._filenames)):
       num_cols = self._num_cols[i]
       kwargs = {'record_defaults': [['']] * num_cols}
       dataset = core_readers.TextLineDataset(self._filenames[i]).repeat()
       dataset = dataset.map(lambda l: parsing_ops.decode_csv(l, **kwargs))  # pylint: disable=cell-var-from-loop
-      self._runBenchmark(dataset, num_cols, 'csv_strings_map_decode_csv')
-    self._tearDown()
+      self._run_benchmark(dataset, num_cols, 'csv_strings_map_decode_csv')
+    self._tear_down()
 
-  def benchmarkCsvDatasetWithFloats(self):
-    self._setUp(self.FLOAT_VAL)
+  def benchmark_csv_dataset_with_floats(self):
+    self._set_up(self.FLOAT_VAL)
     for i in range(len(self._filenames)):
       num_cols = self._num_cols[i]
       kwargs = {'record_defaults': [[0.0]] * num_cols}
       dataset = core_readers.TextLineDataset(self._filenames[i]).repeat()
       dataset = readers.CsvDataset(self._filenames[i], **kwargs).repeat()  # pylint: disable=cell-var-from-loop
-      self._runBenchmark(dataset, num_cols, 'csv_float_fused_dataset')
-    self._tearDown()
+      self._run_benchmark(dataset, num_cols, 'csv_float_fused_dataset')
+    self._tear_down()
 
-  def benchmarkCsvDatasetWithStrings(self):
-    self._setUp(self.STR_VAL)
+  def benchmark_csv_dataset_with_strings(self):
+    self._set_up(self.STR_VAL)
     for i in range(len(self._filenames)):
       num_cols = self._num_cols[i]
       kwargs = {'record_defaults': [['']] * num_cols}
       dataset = core_readers.TextLineDataset(self._filenames[i]).repeat()
       dataset = readers.CsvDataset(self._filenames[i], **kwargs).repeat()  # pylint: disable=cell-var-from-loop
-      self._runBenchmark(dataset, num_cols, 'csv_strings_fused_dataset')
-    self._tearDown()
+      self._run_benchmark(dataset, num_cols, 'csv_strings_fused_dataset')
+    self._tear_down()
 
 if __name__ == '__main__':
   test.main()
diff --git a/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py
index 4b7c1737863..d6950a0ad89 100644
--- a/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py
@@ -40,7 +40,7 @@ _NUMPY_RANDOM_SEED = 42
 class MapAndBatchBenchmark(test.Benchmark):
   """Benchmarks for `tf.data.experimental.map_and_batch()`."""
 
-  def benchmarkMapAndBatch(self):
+  def benchmark_map_and_batch(self):
     """Measures the performance of parallelized batching."""
     shapes = [(), (10,), (10, 10), (10, 10, 10), (224, 224, 3)]
     batch_size_values = [1, 32, 64, 128, 1024]
@@ -94,7 +94,7 @@ class MapAndBatchBenchmark(test.Benchmark):
             iters=iters, wall_time=median_wall_time,
             name="num_elements_%d_batch_size_%d" % (np.prod(shape), batch_size))
 
-  def benchmarkMapAndBatchChainingVersusFusing(self):
+  def benchmark_map_and_batch_chaining_versus_fusing(self):
     """Compares the performance of chaining and fusing map and batch.
 
     NOTE: It is recommended to build the benchmark with
diff --git a/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py
index ac6d7d03602..04229bef3bc 100644
--- a/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py
@@ -49,7 +49,7 @@ class MapDefunBenchmark(test.Benchmark):
           wall_time=mean_us,
           extras={"examples_per_sec": num_iters / (end - start)})
 
-  def benchmarkDefunVsMapFn(self):
+  def benchmark_defun_vs_map_fn(self):
     """Benchmarks to compare the performance of MapDefun vs tf.map_fn."""
 
     @function.defun(input_signature=[tensor_spec.TensorSpec([], dtypes.int32)])
diff --git a/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py
index 22f5267f607..8f1c6586cf4 100644
--- a/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py
@@ -144,32 +144,32 @@ class MapVectorizationBenchmark(test.Benchmark):
                                  (unoptimized_time / optimized_time)))
 
   # Known cheap functions
-  def benchmarkIdentity(self):
+  def benchmark_identity(self):
     self._benchmark_helper(lambda *args: [array_ops.identity(x) for x in args],
                            "identity")
 
-  def benchmarkAddConst(self):
+  def benchmark_add_const(self):
     self._benchmark_helper(lambda *args: [x + 1 for x in args], "add_const")
 
-  def benchmarkReturnConst(self):
+  def benchmark_return_const(self):
     self._benchmark_helper(lambda *args: [constant_op.constant(2)], "ret_const")
 
-  def benchmarkSelect(self):
+  def benchmark_select(self):
     self._benchmark_helper(lambda *args: args[0], "select")
 
-  def benchmarkCast(self):
+  def benchmark_cast(self):
     self._benchmark_helper(
         lambda *args: [math_ops.cast(x, dtypes.float32) for x in args], "cast")
 
-  def benchmarkReshape(self):
+  def benchmark_reshape(self):
     self._benchmark_helper(
         lambda *args: [array_ops.reshape(x, (-1, 30)) for x in args], "reshape")
 
-  def benchmarkDecodeCSV(self):
+  def benchmark_decode_csv(self):
     csv_fn, csv_factory = _generate_csv_test_case()
     self._benchmark_helper(csv_fn, "decode_csv", lambda: [csv_factory()])
 
-  def benchmarkParseSingleExample(self):
+  def benchmark_parse_single_example(self):
     # NOTE: Since we haven't implemented a vectorizer for "SerializeSparse",
     # this function is only naively vectorized.
     parse_fn, parse_factory = _generate_parse_single_example_test_case()
diff --git a/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py b/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py
index cb5bf2946d5..63c5aa392e5 100644
--- a/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py
@@ -35,7 +35,7 @@ from tensorflow.python.platform import test
 class MatchingFilesBenchmark(test.Benchmark):
   """Benchmark for the experimental `MatchingFilesDataset`."""
 
-  def benchmarkNestedDirectories(self):
+  def benchmark_nested_directories(self):
     tmp_dir = tempfile.mkdtemp()
     width = 500
     depth = 10
diff --git a/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py b/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py
index 395a529f853..bb0c3ed2be7 100644
--- a/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py
@@ -32,15 +32,15 @@ from tensorflow.python.platform import test
 class OptimizationBenchmark(test.Benchmark):
   """Benchmarks for static optimizations."""
 
-  def benchmarkMapFusion(self):
+  def benchmark_map_fusion(self):
     """Evaluates performance map of fusion."""
 
     chain_lengths = [0, 1, 2, 5, 10, 20, 50]
     for chain_length in chain_lengths:
-      self._benchmarkMapFusion(chain_length, False)
-      self._benchmarkMapFusion(chain_length, True)
+      self._benchmark_map_fusion(chain_length, False)
+      self._benchmark_map_fusion(chain_length, True)
 
-  def _benchmarkMapFusion(self, chain_length, optimize_dataset):
+  def _benchmark_map_fusion(self, chain_length, optimize_dataset):
     with ops.Graph().as_default():
       dataset = dataset_ops.Dataset.from_tensors(0).repeat(None)
       for _ in range(chain_length):
@@ -73,15 +73,15 @@ class OptimizationBenchmark(test.Benchmark):
             name="map_fusion_{}_chain_length_{}".format(
                 opt_mark, chain_length))
 
-  def benchmarkMapAndFilterFusion(self):
+  def benchmark_map_and_filter_fusion(self):
     """Evaluates performance map of fusion."""
 
     chain_lengths = [0, 1, 2, 5, 10, 20, 50]
     for chain_length in chain_lengths:
-      self._benchmarkMapAndFilterFusion(chain_length, False)
-      self._benchmarkMapAndFilterFusion(chain_length, True)
+      self._benchmark_map_and_filter_fusion(chain_length, False)
+      self._benchmark_map_and_filter_fusion(chain_length, True)
 
-  def _benchmarkMapAndFilterFusion(self, chain_length, optimize_dataset):
+  def _benchmark_map_and_filter_fusion(self, chain_length, optimize_dataset):
     with ops.Graph().as_default():
       dataset = dataset_ops.Dataset.from_tensors(0).repeat(None)
       for _ in range(chain_length):
@@ -116,13 +116,13 @@ class OptimizationBenchmark(test.Benchmark):
 
   # This benchmark compares the performance of pipeline with multiple chained
   # filter with and without filter fusion.
-  def benchmarkFilterFusion(self):
+  def benchmark_filter_fusion(self):
     chain_lengths = [0, 1, 2, 5, 10, 20, 50]
     for chain_length in chain_lengths:
-      self._benchmarkFilterFusion(chain_length, False)
-      self._benchmarkFilterFusion(chain_length, True)
+      self._benchmark_filter_fusion(chain_length, False)
+      self._benchmark_filter_fusion(chain_length, True)
 
-  def _benchmarkFilterFusion(self, chain_length, optimize_dataset):
+  def _benchmark_filter_fusion(self, chain_length, optimize_dataset):
     with ops.Graph().as_default():
       dataset = dataset_ops.Dataset.from_tensors(5).repeat(None)
       for _ in range(chain_length):
diff --git a/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py b/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py
index 9a8ac7ef655..28253b19ece 100644
--- a/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py
@@ -56,7 +56,7 @@ def _time_resampling(data_np, target_dist, init_dist, num_to_sample):  # pylint:
 class RejectionResampleBenchmark(test.Benchmark):
   """Benchmarks for `tf.data.experimental.rejection_resample()`."""
 
-  def benchmarkResamplePerformance(self):
+  def benchmark_resample_performance(self):
     init_dist = [0.25, 0.25, 0.25, 0.25]
     target_dist = [0.0, 0.0, 0.0, 1.0]
     num_classes = len(init_dist)
diff --git a/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py
index 3f5b9b91307..44ca6d9f39b 100644
--- a/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py
+++ b/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py
@@ -33,7 +33,7 @@ from tensorflow.python.platform import test
 class UnbatchBenchmark(test.Benchmark):
   """Benchmarks for `tf.data.experimental.unbatch()`."""
 
-  def benchmarkNativeUnbatch(self):
+  def benchmark_native_unbatch(self):
     batch_sizes = [1, 2, 5, 10, 20, 50]
     elems_per_trial = 10000
     with ops.Graph().as_default():
@@ -70,7 +70,7 @@ class UnbatchBenchmark(test.Benchmark):
   # Include a benchmark of the previous `unbatch()` implementation that uses
   # a composition of more primitive ops. Eventually we'd hope to generate code
   # that is as good in both cases.
-  def benchmarkOldUnbatchImplementation(self):
+  def benchmark_old_unbatch_implementation(self):
     batch_sizes = [1, 2, 5, 10, 20, 50]
     elems_per_trial = 10000
     with ops.Graph().as_default():