diff --git a/tensorflow/python/data/benchmarks/list_files_benchmark.py b/tensorflow/python/data/benchmarks/list_files_benchmark.py index 70f8eeec9e8..381fe4835ec 100644 --- a/tensorflow/python/data/benchmarks/list_files_benchmark.py +++ b/tensorflow/python/data/benchmarks/list_files_benchmark.py @@ -35,7 +35,7 @@ from tensorflow.python.platform import test class ListFilesBenchmark(test.Benchmark): """Benchmarks for `tf.data.Dataset.list_files()`.""" - def benchmarkNestedDirectories(self): + def benchmark_nested_directories(self): tmp_dir = tempfile.mkdtemp() width = 1024 depth = 16 diff --git a/tensorflow/python/data/benchmarks/meta_benchmark.py b/tensorflow/python/data/benchmarks/meta_benchmark.py index c6d888b2df0..f03e6efa600 100644 --- a/tensorflow/python/data/benchmarks/meta_benchmark.py +++ b/tensorflow/python/data/benchmarks/meta_benchmark.py @@ -40,19 +40,19 @@ class MetaBenchmark(test.Benchmark): options.experimental_optimization.apply_default_optimizations = False return dataset_ops.Dataset.range(10000**2).with_options(options) - def benchmarkFastDatasetWithOnlyCppIterations(self): + def benchmark_fast_dataset_with_only_cpp_iterations(self): dataset = self.setup_fast_dataset() self.run_benchmark_with_only_cpp_iterations(dataset) - def benchmarkFastDatasetWithSessionRun(self): + def benchmark_fast_dataset_with_session_run(self): dataset = self.setup_fast_dataset() self.run_benchmark_with_session_run(dataset) - def benchmarkFastDatasetWithSessionCallable(self): + def benchmark_fast_dataset_with_session_callable(self): dataset = self.setup_fast_dataset() self.run_benchmark_with_session_run(dataset, make_callable=True) - def benchmarkFastDatasetInEager(self): + def benchmark_fast_dataset_in_eager(self): with context.eager_mode(): dataset = self.setup_fast_dataset() self.run_benchmark_in_eager(dataset) @@ -63,19 +63,19 @@ class MetaBenchmark(test.Benchmark): # sleep for 1e-3s per iteration return dataset.apply(sleep.sleep(1000)) - def benchmarkSlowDatasetWithOnlyCppIterations(self): + def benchmark_slow_dataset_with_only_cpp_iterations(self): dataset = self.setup_slow_dataset() self.run_benchmark_with_only_cpp_iterations(dataset) - def benchmarkSlowDatasetWithSessionRun(self): + def benchmark_slow_dataset_with_session_run(self): dataset = self.setup_slow_dataset() self.run_benchmark_with_session_run(dataset) - def benchmarkSlowDatasetWithSessionCallable(self): + def benchmark_slow_dataset_with_session_callable(self): dataset = self.setup_slow_dataset() self.run_benchmark_with_session_run(dataset, make_callable=True) - def benchmarkSlowDatasetInEager(self): + def benchmark_slow_dataset_in_eager(self): with context.eager_mode(): dataset = self.setup_slow_dataset() self.run_benchmark_in_eager(dataset) diff --git a/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py b/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py index e0e6f88cd04..33606847866 100644 --- a/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/autotune_benchmark.py @@ -31,12 +31,12 @@ from tensorflow.python.platform import test class AutotuneBenchmark(test.Benchmark): """Benchmarks for autotuning performance knobs.""" - def benchmarkMap(self): - a = self._benchmarkMap(autotune=False) - b = self._benchmarkMap(autotune=True) + def benchmark_map(self): + a = self._benchmark_map(autotune=False) + b = self._benchmark_map(autotune=True) print("speedup: %f" % (a / b)) - def _benchmarkMap(self, autotune): + def _benchmark_map(self, autotune): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), np.random.rand(4 * k, @@ -66,12 +66,12 @@ class AutotuneBenchmark(test.Benchmark): name="map" + ("_autotune" if autotune else "")) return np.median(deltas) - def benchmarkMapAndBatch(self): - a = self._benchmarkMapAndBatch(autotune=False) - b = self._benchmarkMapAndBatch(autotune=True) + def benchmark_map_and_batch(self): + a = self._benchmark_map_and_batch(autotune=False) + b = self._benchmark_map_and_batch(autotune=True) print("speedup: %f" % (a / b)) - def _benchmarkMapAndBatch(self, autotune): + def _benchmark_map_and_batch(self, autotune): batch_size = 16 k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), @@ -104,12 +104,12 @@ class AutotuneBenchmark(test.Benchmark): name="map_and_batch" + ("_autotune" if autotune else "")) return np.median(deltas) - def benchmarkInterleave(self): - a = self._benchmarkInterleave(autotune=False) - b = self._benchmarkInterleave(autotune=True) + def benchmark_interleave(self): + a = self._benchmark_interleave(autotune=False) + b = self._benchmark_interleave(autotune=True) print("speedup: %f" % (a / b)) - def _benchmarkInterleave(self, autotune): + def _benchmark_interleave(self, autotune): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), np.random.rand(4 * k, @@ -142,12 +142,12 @@ class AutotuneBenchmark(test.Benchmark): name="interleave" + ("_autotune" if autotune else "")) return np.median(deltas) - def benchmarkMapAndInterleave(self): - a = self._benchmarkMapAndInterleave(autotune=False) - b = self._benchmarkMapAndInterleave(autotune=True) + def benchmark_map_and_interleave(self): + a = self._benchmark_map_and_interleave(autotune=False) + b = self._benchmark_map_and_interleave(autotune=True) print("speedup: %f" % (a / b)) - def _benchmarkMapAndInterleave(self, autotune): + def _benchmark_map_and_interleave(self, autotune): k = 1024 * 1024 a = (np.random.rand(1, 8 * k), np.random.rand(8 * k, 1)) b = (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1)) diff --git a/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py b/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py index 4a5a264c6f3..258c54dbe2f 100644 --- a/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/choose_fastest_benchmark.py @@ -31,7 +31,7 @@ from tensorflow.python.platform import test class ChooseFastestBenchmark(test.Benchmark): """Benchmarks for static optimizations.""" - def benchmarkChooseFastest(self): + def benchmark_choose_fastest(self): dataset = dataset_ops.Dataset.range(1000**2).repeat() options = dataset_ops.Options() @@ -46,7 +46,7 @@ class ChooseFastestBenchmark(test.Benchmark): self._benchmark(batch_map_dataset, "batch_map_dataset") self._benchmark(merge_dataset, "merge_dataset") - def benchmarkChooseFastestFirstNIterations(self): + def benchmark_choose_fastest_first_n_iterations(self): dataset = dataset_ops.Dataset.range(1000**2).repeat() options = dataset_ops.Options() @@ -58,11 +58,11 @@ class ChooseFastestBenchmark(test.Benchmark): merge_dataset = optimization._ChooseFastestDataset( # pylint: disable=protected-access [batch_map_dataset, map_batch_dataset]) - self._benchmarkFirstN(map_batch_dataset, "map_batch_dataset") - self._benchmarkFirstN(batch_map_dataset, "batch_map_dataset") - self._benchmarkFirstN(merge_dataset, "merge_dataset") + self._benchmark_first_n(map_batch_dataset, "map_batch_dataset") + self._benchmark_first_n(batch_map_dataset, "batch_map_dataset") + self._benchmark_first_n(merge_dataset, "merge_dataset") - def _benchmarkFirstN(self, dataset, name): + def _benchmark_first_n(self, dataset, name): n = 10 # The default num_experiments for ChooseFastestDataset iterator = dataset_ops.make_one_shot_iterator(dataset) next_element = iterator.get_next() diff --git a/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py index e76235f8255..2b7761c1fca 100644 --- a/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/choose_fastest_branch_benchmark.py @@ -53,7 +53,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase): return self.make_benchmark_datasets(dataset, branch_0, branch_1, 100) - def benchmarkChooseFastest(self): + def benchmark_choose_fastest(self): map_batch, batch_map, choose_fastest = self.make_simple_benchmark_datasets() def benchmark(dataset, name): @@ -63,7 +63,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase): benchmark(batch_map, "batch_map_dataset") benchmark(choose_fastest, "choose_fastest_dataset") - def benchmarkChooseFastestFirstNIterations(self): + def benchmark_choose_fastest_first_n_iterations(self): map_batch, batch_map, choose_fastest = self.make_simple_benchmark_datasets() @@ -75,7 +75,7 @@ class ChooseFastestBranchBenchmark(benchmark_base.DatasetBenchmarkBase): benchmark(batch_map, "batch_map_dataset") benchmark(choose_fastest, "choose_fastest_dataset") - def benchmarkWithInputSkew(self): + def benchmark_with_input_skew(self): def make_dataset(time_us, num_elements): return dataset_ops.Dataset.range(num_elements).apply(sleep.sleep(time_us)) diff --git a/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py b/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py index 2e91e08c79f..10bddb0ab83 100644 --- a/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/csv_dataset_benchmark.py @@ -41,7 +41,7 @@ class CsvDatasetBenchmark(test.Benchmark): FLOAT_VAL = '1.23456E12' STR_VAL = string.ascii_letters * 10 - def _setUp(self, str_val): + def _set_up(self, str_val): # Since this isn't test.TestCase, have to manually create a test dir gfile.MakeDirs(googletest.GetTempDir()) self._temp_dir = tempfile.mkdtemp(dir=googletest.GetTempDir()) @@ -58,10 +58,10 @@ class CsvDatasetBenchmark(test.Benchmark): f.write('\n'.join([row for _ in range(100)])) self._filenames.append(fn) - def _tearDown(self): + def _tear_down(self): gfile.DeleteRecursively(self._temp_dir) - def _runBenchmark(self, dataset, num_cols, prefix): + def _run_benchmark(self, dataset, num_cols, prefix): dataset = dataset.skip(self._num_per_iter - 1) options = dataset_ops.Options() options.experimental_optimization.apply_default_optimizations = False @@ -87,45 +87,45 @@ class CsvDatasetBenchmark(test.Benchmark): wall_time=median_wall_time, name='%s_with_cols_%d' % (prefix, num_cols)) - def benchmarkMapWithFloats(self): - self._setUp(self.FLOAT_VAL) + def benchmark_map_with_floats(self): + self._set_up(self.FLOAT_VAL) for i in range(len(self._filenames)): num_cols = self._num_cols[i] kwargs = {'record_defaults': [[0.0]] * num_cols} dataset = core_readers.TextLineDataset(self._filenames[i]).repeat() dataset = dataset.map(lambda l: parsing_ops.decode_csv(l, **kwargs)) # pylint: disable=cell-var-from-loop - self._runBenchmark(dataset, num_cols, 'csv_float_map_decode_csv') - self._tearDown() + self._run_benchmark(dataset, num_cols, 'csv_float_map_decode_csv') + self._tear_down() - def benchmarkMapWithStrings(self): - self._setUp(self.STR_VAL) + def benchmark_map_with_strings(self): + self._set_up(self.STR_VAL) for i in range(len(self._filenames)): num_cols = self._num_cols[i] kwargs = {'record_defaults': [['']] * num_cols} dataset = core_readers.TextLineDataset(self._filenames[i]).repeat() dataset = dataset.map(lambda l: parsing_ops.decode_csv(l, **kwargs)) # pylint: disable=cell-var-from-loop - self._runBenchmark(dataset, num_cols, 'csv_strings_map_decode_csv') - self._tearDown() + self._run_benchmark(dataset, num_cols, 'csv_strings_map_decode_csv') + self._tear_down() - def benchmarkCsvDatasetWithFloats(self): - self._setUp(self.FLOAT_VAL) + def benchmark_csv_dataset_with_floats(self): + self._set_up(self.FLOAT_VAL) for i in range(len(self._filenames)): num_cols = self._num_cols[i] kwargs = {'record_defaults': [[0.0]] * num_cols} dataset = core_readers.TextLineDataset(self._filenames[i]).repeat() dataset = readers.CsvDataset(self._filenames[i], **kwargs).repeat() # pylint: disable=cell-var-from-loop - self._runBenchmark(dataset, num_cols, 'csv_float_fused_dataset') - self._tearDown() + self._run_benchmark(dataset, num_cols, 'csv_float_fused_dataset') + self._tear_down() - def benchmarkCsvDatasetWithStrings(self): - self._setUp(self.STR_VAL) + def benchmark_csv_dataset_with_strings(self): + self._set_up(self.STR_VAL) for i in range(len(self._filenames)): num_cols = self._num_cols[i] kwargs = {'record_defaults': [['']] * num_cols} dataset = core_readers.TextLineDataset(self._filenames[i]).repeat() dataset = readers.CsvDataset(self._filenames[i], **kwargs).repeat() # pylint: disable=cell-var-from-loop - self._runBenchmark(dataset, num_cols, 'csv_strings_fused_dataset') - self._tearDown() + self._run_benchmark(dataset, num_cols, 'csv_strings_fused_dataset') + self._tear_down() if __name__ == '__main__': test.main() diff --git a/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py index 4b7c1737863..d6950a0ad89 100644 --- a/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/map_and_batch_benchmark.py @@ -40,7 +40,7 @@ _NUMPY_RANDOM_SEED = 42 class MapAndBatchBenchmark(test.Benchmark): """Benchmarks for `tf.data.experimental.map_and_batch()`.""" - def benchmarkMapAndBatch(self): + def benchmark_map_and_batch(self): """Measures the performance of parallelized batching.""" shapes = [(), (10,), (10, 10), (10, 10, 10), (224, 224, 3)] batch_size_values = [1, 32, 64, 128, 1024] @@ -94,7 +94,7 @@ class MapAndBatchBenchmark(test.Benchmark): iters=iters, wall_time=median_wall_time, name="num_elements_%d_batch_size_%d" % (np.prod(shape), batch_size)) - def benchmarkMapAndBatchChainingVersusFusing(self): + def benchmark_map_and_batch_chaining_versus_fusing(self): """Compares the performance of chaining and fusing map and batch. NOTE: It is recommended to build the benchmark with diff --git a/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py index ac6d7d03602..04229bef3bc 100644 --- a/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/map_defun_benchmark.py @@ -49,7 +49,7 @@ class MapDefunBenchmark(test.Benchmark): wall_time=mean_us, extras={"examples_per_sec": num_iters / (end - start)}) - def benchmarkDefunVsMapFn(self): + def benchmark_defun_vs_map_fn(self): """Benchmarks to compare the performance of MapDefun vs tf.map_fn.""" @function.defun(input_signature=[tensor_spec.TensorSpec([], dtypes.int32)]) diff --git a/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py b/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py index 22f5267f607..8f1c6586cf4 100644 --- a/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/map_vectorization_benchmark.py @@ -144,32 +144,32 @@ class MapVectorizationBenchmark(test.Benchmark): (unoptimized_time / optimized_time))) # Known cheap functions - def benchmarkIdentity(self): + def benchmark_identity(self): self._benchmark_helper(lambda *args: [array_ops.identity(x) for x in args], "identity") - def benchmarkAddConst(self): + def benchmark_add_const(self): self._benchmark_helper(lambda *args: [x + 1 for x in args], "add_const") - def benchmarkReturnConst(self): + def benchmark_return_const(self): self._benchmark_helper(lambda *args: [constant_op.constant(2)], "ret_const") - def benchmarkSelect(self): + def benchmark_select(self): self._benchmark_helper(lambda *args: args[0], "select") - def benchmarkCast(self): + def benchmark_cast(self): self._benchmark_helper( lambda *args: [math_ops.cast(x, dtypes.float32) for x in args], "cast") - def benchmarkReshape(self): + def benchmark_reshape(self): self._benchmark_helper( lambda *args: [array_ops.reshape(x, (-1, 30)) for x in args], "reshape") - def benchmarkDecodeCSV(self): + def benchmark_decode_csv(self): csv_fn, csv_factory = _generate_csv_test_case() self._benchmark_helper(csv_fn, "decode_csv", lambda: [csv_factory()]) - def benchmarkParseSingleExample(self): + def benchmark_parse_single_example(self): # NOTE: Since we haven't implemented a vectorizer for "SerializeSparse", # this function is only naively vectorized. parse_fn, parse_factory = _generate_parse_single_example_test_case() diff --git a/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py b/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py index cb5bf2946d5..63c5aa392e5 100644 --- a/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/matching_files_benchmark.py @@ -35,7 +35,7 @@ from tensorflow.python.platform import test class MatchingFilesBenchmark(test.Benchmark): """Benchmark for the experimental `MatchingFilesDataset`.""" - def benchmarkNestedDirectories(self): + def benchmark_nested_directories(self): tmp_dir = tempfile.mkdtemp() width = 500 depth = 10 diff --git a/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py b/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py index 395a529f853..bb0c3ed2be7 100644 --- a/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/optimize_benchmark.py @@ -32,15 +32,15 @@ from tensorflow.python.platform import test class OptimizationBenchmark(test.Benchmark): """Benchmarks for static optimizations.""" - def benchmarkMapFusion(self): + def benchmark_map_fusion(self): """Evaluates performance map of fusion.""" chain_lengths = [0, 1, 2, 5, 10, 20, 50] for chain_length in chain_lengths: - self._benchmarkMapFusion(chain_length, False) - self._benchmarkMapFusion(chain_length, True) + self._benchmark_map_fusion(chain_length, False) + self._benchmark_map_fusion(chain_length, True) - def _benchmarkMapFusion(self, chain_length, optimize_dataset): + def _benchmark_map_fusion(self, chain_length, optimize_dataset): with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors(0).repeat(None) for _ in range(chain_length): @@ -73,15 +73,15 @@ class OptimizationBenchmark(test.Benchmark): name="map_fusion_{}_chain_length_{}".format( opt_mark, chain_length)) - def benchmarkMapAndFilterFusion(self): + def benchmark_map_and_filter_fusion(self): """Evaluates performance map of fusion.""" chain_lengths = [0, 1, 2, 5, 10, 20, 50] for chain_length in chain_lengths: - self._benchmarkMapAndFilterFusion(chain_length, False) - self._benchmarkMapAndFilterFusion(chain_length, True) + self._benchmark_map_and_filter_fusion(chain_length, False) + self._benchmark_map_and_filter_fusion(chain_length, True) - def _benchmarkMapAndFilterFusion(self, chain_length, optimize_dataset): + def _benchmark_map_and_filter_fusion(self, chain_length, optimize_dataset): with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors(0).repeat(None) for _ in range(chain_length): @@ -116,13 +116,13 @@ class OptimizationBenchmark(test.Benchmark): # This benchmark compares the performance of pipeline with multiple chained # filter with and without filter fusion. - def benchmarkFilterFusion(self): + def benchmark_filter_fusion(self): chain_lengths = [0, 1, 2, 5, 10, 20, 50] for chain_length in chain_lengths: - self._benchmarkFilterFusion(chain_length, False) - self._benchmarkFilterFusion(chain_length, True) + self._benchmark_filter_fusion(chain_length, False) + self._benchmark_filter_fusion(chain_length, True) - def _benchmarkFilterFusion(self, chain_length, optimize_dataset): + def _benchmark_filter_fusion(self, chain_length, optimize_dataset): with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors(5).repeat(None) for _ in range(chain_length): diff --git a/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py b/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py index 9a8ac7ef655..28253b19ece 100644 --- a/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/rejection_resample_benchmark.py @@ -56,7 +56,7 @@ def _time_resampling(data_np, target_dist, init_dist, num_to_sample): # pylint: class RejectionResampleBenchmark(test.Benchmark): """Benchmarks for `tf.data.experimental.rejection_resample()`.""" - def benchmarkResamplePerformance(self): + def benchmark_resample_performance(self): init_dist = [0.25, 0.25, 0.25, 0.25] target_dist = [0.0, 0.0, 0.0, 1.0] num_classes = len(init_dist) diff --git a/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py b/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py index 3f5b9b91307..44ca6d9f39b 100644 --- a/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py +++ b/tensorflow/python/data/experimental/benchmarks/unbatch_benchmark.py @@ -33,7 +33,7 @@ from tensorflow.python.platform import test class UnbatchBenchmark(test.Benchmark): """Benchmarks for `tf.data.experimental.unbatch()`.""" - def benchmarkNativeUnbatch(self): + def benchmark_native_unbatch(self): batch_sizes = [1, 2, 5, 10, 20, 50] elems_per_trial = 10000 with ops.Graph().as_default(): @@ -70,7 +70,7 @@ class UnbatchBenchmark(test.Benchmark): # Include a benchmark of the previous `unbatch()` implementation that uses # a composition of more primitive ops. Eventually we'd hope to generate code # that is as good in both cases. - def benchmarkOldUnbatchImplementation(self): + def benchmark_old_unbatch_implementation(self): batch_sizes = [1, 2, 5, 10, 20, 50] elems_per_trial = 10000 with ops.Graph().as_default():