[tf.data] Switching to using multi-device function by default.

PiperOrigin-RevId: 312830323
Change-Id: I9e1ae4aea3ab230f06a26dc79a17fc3aa66ca422
This commit is contained in:
Jiri Simsa 2020-05-22 07:31:23 -07:00 committed by TensorFlower Gardener
parent f8c0e68a8a
commit 0c83272451
2 changed files with 1 additions and 78 deletions

View File

@ -560,8 +560,7 @@ Status CapturedFunction::Instantiate(
if (!metadata_->use_inter_op_parallelism()) { if (!metadata_->use_inter_op_parallelism()) {
inst_opts.executor_type = "SINGLE_THREADED_EXECUTOR"; inst_opts.executor_type = "SINGLE_THREADED_EXECUTOR";
} }
bool is_multi_device = false; bool is_multi_device = metadata_->use_multi_device_function();
TF_RETURN_IF_ERROR(IsMultiDevice(ctx, &is_multi_device));
inst_opts.is_multi_device_function = is_multi_device; inst_opts.is_multi_device_function = is_multi_device;
// We infer the target device from the function library runtime. // We infer the target device from the function library runtime.
@ -864,77 +863,5 @@ CapturedFunction::CapturedFunction(
: metadata_(std::move(metadata)), : metadata_(std::move(metadata)),
captured_inputs_(std::move(captured_inputs)) {} captured_inputs_(std::move(captured_inputs)) {}
Status CapturedFunction::IsMultiDevice(IteratorContext* ctx,
bool* is_multi_device) {
if (!metadata_->use_multi_device_function()) {
*is_multi_device = false;
return Status::OK();
}
const FunctionDef* fdef;
TF_RETURN_IF_ERROR(
LookupFunction(*metadata_->lib_def(), metadata_->func().name(), &fdef));
Device* current_device = ctx->flr()->device();
DeviceType current_device_type(current_device->device_type());
DeviceNameUtils::ParsedName current_device_name;
if (!DeviceNameUtils::ParseFullName(current_device->name(),
&current_device_name)) {
return errors::InvalidArgument("Failed to parse device name: ",
current_device->name());
}
// Check if any of the captured inputs are placed on a device not compatible
// with the current device. For non-captured inputs, we assume they are placed
// on the current device.
for (const auto& input : captured_inputs_) {
DataType dtype = input.dtype();
if (dtype == DT_RESOURCE) {
const ResourceHandle& handle = input.flat<ResourceHandle>()(0);
DeviceNameUtils::ParsedName resource_device_name;
if (!DeviceNameUtils::ParseFullName(handle.device(),
&resource_device_name)) {
return errors::InvalidArgument("Failed to parse device name: ",
handle.device());
}
if (!DeviceNameUtils::AreCompatibleDevNames(current_device_name,
resource_device_name)) {
*is_multi_device = true;
return Status::OK();
}
}
}
// Check if all ops could be placed on the current device.
for (const auto& name : metadata_->lib_def()->ListFunctionNames()) {
const FunctionDef* fdef;
TF_RETURN_IF_ERROR(LookupFunction(*metadata_->lib_def(), name, &fdef));
for (const auto& node : fdef->node_def()) {
// Check if the op has a kernel available for the current device.
if (!KernelDefAvailable(current_device_type, node)) {
*is_multi_device = true;
return Status::OK();
}
// If the op has a requested device, check if the requested device is
// compatible with the current device.
if (!node.device().empty()) {
DeviceNameUtils::ParsedName node_device_name;
if (!DeviceNameUtils::ParseFullName(node.device(), &node_device_name)) {
return errors::InvalidArgument("Failed to parse device name: ",
node.device());
}
if (!DeviceNameUtils::AreCompatibleDevNames(current_device_name,
node_device_name)) {
*is_multi_device = true;
return Status::OK();
}
}
}
}
*is_multi_device = false;
return Status::OK();
}
} // namespace data } // namespace data
} // namespace tensorflow } // namespace tensorflow

View File

@ -256,10 +256,6 @@ class CapturedFunction {
CapturedFunction(std::shared_ptr<const FunctionMetadata> metadata, CapturedFunction(std::shared_ptr<const FunctionMetadata> metadata,
std::vector<Tensor> captured_inputs); std::vector<Tensor> captured_inputs);
// Determines whether the captured function requires the use of the
// multi-device function backend.
Status IsMultiDevice(IteratorContext* ctx, bool* is_multi_device);
const std::shared_ptr<const FunctionMetadata> metadata_; const std::shared_ptr<const FunctionMetadata> metadata_;
const std::vector<Tensor> captured_inputs_; const std::vector<Tensor> captured_inputs_;