Remove the canonicalize pattern for folding a pad op into the following conv op.
Basically rolledback for cl/305641881, the pattern could hurt performance because the operation can't be fully tiled in Linalg transformation. In this context, not everyone wants this pattern, so remove it from canonicalize patterns. PiperOrigin-RevId: 317302072 Change-Id: I19aa64e14eecccfd738ad3f775f3670974bc68f9
This commit is contained in:
parent
968ea60375
commit
0c7e61d660
@ -106,53 +106,6 @@ DenseIntElementsAttr BuildSliceLimits(DenseIntElementsAttr start_indices,
|
||||
return GetI64ElementsAttr(slice_limits, builder);
|
||||
}
|
||||
|
||||
// Returns the padding value of the given position. If padding_attr is a
|
||||
// nullptr, returns 0.
|
||||
static int64_t GetPaddingValue(DenseIntElementsAttr padding_attr,
|
||||
ArrayRef<uint64_t> index) {
|
||||
if (!padding_attr) return 0;
|
||||
return padding_attr.getValue<int64_t>(index);
|
||||
}
|
||||
|
||||
static bool IsOnlyPaddingSpatialDims(Value lhs,
|
||||
ConvDimensionNumbers dimension_numbers,
|
||||
DenseIntElementsAttr edge_padding_low,
|
||||
DenseIntElementsAttr edge_padding_high) {
|
||||
const int64_t batch_dim = dimension_numbers.input_batch_dimension().getInt();
|
||||
const int64_t feature_dim =
|
||||
dimension_numbers.input_feature_dimension().getInt();
|
||||
if (edge_padding_low.getValue<int64_t>(batch_dim) ||
|
||||
edge_padding_high.getValue<int64_t>(batch_dim))
|
||||
return false;
|
||||
if (edge_padding_low.getValue<int64_t>(feature_dim) ||
|
||||
edge_padding_high.getValue<int64_t>(feature_dim))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
DenseIntElementsAttr BuildConvPaddingAttrs(
|
||||
DenseIntElementsAttr edge_padding_low,
|
||||
DenseIntElementsAttr edge_padding_high, DenseIntElementsAttr padding_attr,
|
||||
ConvDimensionNumbers dimension_numbers, Builder* builder) {
|
||||
SmallVector<int64_t, 4> padding_low, padding_high;
|
||||
for (const auto& dim : dimension_numbers.input_spatial_dimensions()) {
|
||||
unsigned i = dim.getZExtValue();
|
||||
padding_low.push_back(edge_padding_low.getValue<int64_t>(i));
|
||||
padding_high.push_back(edge_padding_high.getValue<int64_t>(i));
|
||||
}
|
||||
|
||||
int rank = padding_low.size();
|
||||
SmallVector<int64_t, 8> padding;
|
||||
for (unsigned i = 0, e = rank; i < e; ++i) {
|
||||
padding.push_back(GetPaddingValue(padding_attr, {i, 0}) + padding_low[i]);
|
||||
padding.push_back(GetPaddingValue(padding_attr, {i, 1}) + padding_high[i]);
|
||||
}
|
||||
// padding_attr.getType() doesn't work because it is an optional attribute,
|
||||
// which can be a nullptr.
|
||||
auto type = RankedTensorType::get({rank, 2}, builder->getIntegerType(64));
|
||||
return DenseIntElementsAttr::get(type, padding);
|
||||
}
|
||||
|
||||
#include "tensorflow/compiler/mlir/xla/transforms/generated_canonicalize.inc"
|
||||
} // namespace
|
||||
|
||||
@ -2153,14 +2106,5 @@ LogicalResult deriveShapeFromFirstOperand(
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ConvOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void ConvOp::getCanonicalizationPatterns(OwningRewritePatternList& results,
|
||||
MLIRContext* context) {
|
||||
results.insert<FoldPadIntoConv>(context);
|
||||
}
|
||||
|
||||
} // namespace xla_hlo
|
||||
} // namespace mlir
|
||||
|
@ -929,8 +929,6 @@ def HLO_ConvOp : HLO_Op<"convolution", [NoSideEffect]>, BASE_HLO_ConvOp {
|
||||
);
|
||||
|
||||
let results = (outs HLO_Tensor);
|
||||
|
||||
let hasCanonicalizer = 1;
|
||||
}
|
||||
|
||||
def HLO_CopyOp: HLO_Op<"copy", [NoSideEffect, SameOperandsAndResultType]>, BASE_HLO_CopyOp {
|
||||
|
@ -415,71 +415,6 @@ func @fold_copy(%arg : tensor<1x4xf32>) -> tensor<1x4xf32> {
|
||||
return %0 : tensor<1x4xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @fold_pad_into_conv_f32
|
||||
func @fold_pad_into_conv_f32(%arg0 : tensor<1x32x32x3xf32>,
|
||||
%arg1 : tensor<7x7x3x64xf32>)
|
||||
-> tensor<1x16x16x64xf32> {
|
||||
// CHECK-NOT: xla_hlo.pad
|
||||
// CHECK: xla_hlo.convolution
|
||||
// CHECK-SAME: padding = dense<3> : tensor<2x2xi64>
|
||||
%0 = xla_hlo.constant dense<0.000000e+00> : tensor<f32>
|
||||
%1 = "xla_hlo.pad"(%arg0, %0) {
|
||||
edge_padding_high = dense<[0, 3, 3, 0]> : tensor<4xi64>,
|
||||
edge_padding_low = dense<[0, 3, 3, 0]> : tensor<4xi64>,
|
||||
interior_padding = dense<0> : tensor<4xi64>
|
||||
} : (tensor<1x32x32x3xf32>, tensor<f32>) -> tensor<1x38x38x3xf32>
|
||||
%2 = "xla_hlo.convolution"(%1, %arg1) {
|
||||
batch_group_count = 1 : i64,
|
||||
dimension_numbers = {
|
||||
input_batch_dimension = 0 : i64,
|
||||
input_feature_dimension = 3 : i64,
|
||||
input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>,
|
||||
kernel_input_feature_dimension = 2 : i64,
|
||||
kernel_output_feature_dimension = 3 : i64,
|
||||
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
|
||||
output_batch_dimension = 0 : i64,
|
||||
output_feature_dimension = 3 : i64,
|
||||
output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>
|
||||
},
|
||||
feature_group_count = 1 : i64,
|
||||
padding = dense<0> : tensor<2x2xi64>,
|
||||
window_strides = dense<2> : tensor<2xi64>
|
||||
} : (tensor<1x38x38x3xf32>, tensor<7x7x3x64xf32>) -> tensor<1x16x16x64xf32>
|
||||
return %2 : tensor<1x16x16x64xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @fold_pad_into_conv_i32
|
||||
func @fold_pad_into_conv_i32(%arg0 : tensor<1x32x32x3xi32>,
|
||||
%arg1 : tensor<7x7x3x64xi32>)
|
||||
-> tensor<1x16x16x64xi32> {
|
||||
// CHECK-NOT: xla_hlo.pad
|
||||
// CHECK: xla_hlo.convolution
|
||||
// CHECK-SAME: padding = dense<3> : tensor<2x2xi64>
|
||||
%0 = xla_hlo.constant dense<0> : tensor<i32>
|
||||
%1 = "xla_hlo.pad"(%arg0, %0) {
|
||||
edge_padding_high = dense<[0, 3, 3, 0]> : tensor<4xi64>,
|
||||
edge_padding_low = dense<[0, 3, 3, 0]> : tensor<4xi64>,
|
||||
interior_padding = dense<0> : tensor<4xi64>
|
||||
} : (tensor<1x32x32x3xi32>, tensor<i32>) -> tensor<1x38x38x3xi32>
|
||||
%2 = "xla_hlo.convolution"(%1, %arg1) {
|
||||
batch_group_count = 1 : i64,
|
||||
dimension_numbers = {
|
||||
input_batch_dimension = 0 : i64,
|
||||
input_feature_dimension = 3 : i64,
|
||||
input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>,
|
||||
kernel_input_feature_dimension = 2 : i64,
|
||||
kernel_output_feature_dimension = 3 : i64,
|
||||
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
|
||||
output_batch_dimension = 0 : i64,
|
||||
output_feature_dimension = 3 : i64,
|
||||
output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>
|
||||
},
|
||||
feature_group_count = 1 : i64,
|
||||
window_strides = dense<2> : tensor<2xi64>
|
||||
} : (tensor<1x38x38x3xi32>, tensor<7x7x3x64xi32>) -> tensor<1x16x16x64xi32>
|
||||
return %2 : tensor<1x16x16x64xi32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @dynamic_reshape_not_actually_dynamic
|
||||
func @dynamic_reshape_not_actually_dynamic(%arg0: tensor<4xf32>, %shape: tensor<2xindex>) -> tensor<4x1xf32> {
|
||||
// CHECK: xla_hlo.reshape
|
||||
|
@ -28,54 +28,3 @@ def UnaryEinsumToEinsum : Pat<
|
||||
(HLO_UnaryEinsumOp $operand, $equation),
|
||||
(HLO_EinsumOp (HLO_ConstOp (GetScalarOfType<1> $operand)),
|
||||
$operand, (UnaryToBinaryEinsumEq $equation))>;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Conv op patterns.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
def IsZero : Attr<CPred<
|
||||
"($_self.isa<DenseFPElementsAttr>() &&"
|
||||
"$_self.cast<DenseFPElementsAttr>().isSplat() &&"
|
||||
"$_self.cast<DenseFPElementsAttr>().getSplatValue<FloatAttr>()"
|
||||
".getValue().isZero()) ||"
|
||||
"($_self.isa<DenseIntElementsAttr>() &&"
|
||||
"$_self.cast<DenseIntElementsAttr>().isSplat() &&"
|
||||
"$_self.cast<DenseIntElementsAttr>().getSplatValue<IntegerAttr>()"
|
||||
".getInt() == 0)">>;
|
||||
|
||||
def IsOnlyPaddingSpatialDims
|
||||
: Constraint<CPred<"IsOnlyPaddingSpatialDims($0, $1, $2, $3)">>;
|
||||
|
||||
def BuildConvPaddingAttrs : NativeCodeCall<
|
||||
"BuildConvPaddingAttrs($0, $1, $2, $3, &$_builder)">;
|
||||
|
||||
def FoldPadIntoConv : Pat<
|
||||
(HLO_ConvOp
|
||||
(HLO_PadOp $lhs,
|
||||
(HLO_ConstOp IsZero:$padding_value),
|
||||
$edge_padding_low,
|
||||
$edge_padding_high,
|
||||
IsZero:$interior_padding),
|
||||
$rhs,
|
||||
$window_strides,
|
||||
$padding,
|
||||
$lhs_dilation,
|
||||
$rhs_dilation,
|
||||
$dimension_numbers,
|
||||
$feature_group_count,
|
||||
$batch_group_count,
|
||||
$precision_config),
|
||||
(HLO_ConvOp
|
||||
$lhs,
|
||||
$rhs,
|
||||
$window_strides,
|
||||
(BuildConvPaddingAttrs $edge_padding_low, $edge_padding_high, $padding,
|
||||
$dimension_numbers),
|
||||
$lhs_dilation,
|
||||
$rhs_dilation,
|
||||
$dimension_numbers,
|
||||
$feature_group_count,
|
||||
$batch_group_count,
|
||||
$precision_config),
|
||||
[(IsOnlyPaddingSpatialDims $lhs, $dimension_numbers, $edge_padding_low,
|
||||
$edge_padding_high)]>;
|
||||
|
Loading…
Reference in New Issue
Block a user