Merge pull request #29722 from k-w-w/cherrypicks_WPCYV
Cherrypicks for Keras SavedModel
This commit is contained in:
commit
0c59cc94fd
tensorflow
lite/python
python
eager
keras
saved_model
tools/api/golden/v1
tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxttensorflow.keras.experimental.-sequence-features.pbtxttensorflow.keras.layers.-abstract-r-n-n-cell.pbtxttensorflow.keras.layers.-activation.pbtxttensorflow.keras.layers.-activity-regularization.pbtxttensorflow.keras.layers.-add.pbtxttensorflow.keras.layers.-additive-attention.pbtxttensorflow.keras.layers.-alpha-dropout.pbtxttensorflow.keras.layers.-attention.pbtxttensorflow.keras.layers.-average-pooling1-d.pbtxttensorflow.keras.layers.-average-pooling2-d.pbtxttensorflow.keras.layers.-average-pooling3-d.pbtxttensorflow.keras.layers.-average.pbtxttensorflow.keras.layers.-avg-pool1-d.pbtxttensorflow.keras.layers.-avg-pool2-d.pbtxttensorflow.keras.layers.-avg-pool3-d.pbtxttensorflow.keras.layers.-batch-normalization.pbtxttensorflow.keras.layers.-bidirectional.pbtxttensorflow.keras.layers.-concatenate.pbtxttensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxttensorflow.keras.layers.-conv1-d.pbtxttensorflow.keras.layers.-conv2-d-transpose.pbtxttensorflow.keras.layers.-conv2-d.pbtxttensorflow.keras.layers.-conv3-d-transpose.pbtxttensorflow.keras.layers.-conv3-d.pbtxttensorflow.keras.layers.-convolution1-d.pbtxttensorflow.keras.layers.-convolution2-d-transpose.pbtxttensorflow.keras.layers.-convolution2-d.pbtxttensorflow.keras.layers.-convolution3-d-transpose.pbtxttensorflow.keras.layers.-convolution3-d.pbtxttensorflow.keras.layers.-cropping1-d.pbtxttensorflow.keras.layers.-cropping2-d.pbtxttensorflow.keras.layers.-cropping3-d.pbtxttensorflow.keras.layers.-cu-d-n-n-g-r-u.pbtxttensorflow.keras.layers.-cu-d-n-n-l-s-t-m.pbtxttensorflow.keras.layers.-dense-features.pbtxttensorflow.keras.layers.-dense.pbtxttensorflow.keras.layers.-depthwise-conv2-d.pbtxttensorflow.keras.layers.-dot.pbtxttensorflow.keras.layers.-dropout.pbtxttensorflow.keras.layers.-e-l-u.pbtxttensorflow.keras.layers.-embedding.pbtxttensorflow.keras.layers.-flatten.pbtxttensorflow.keras.layers.-g-r-u-cell.pbtxttensorflow.keras.layers.-g-r-u.pbtxttensorflow.keras.layers.-gaussian-dropout.pbtxttensorflow.keras.layers.-gaussian-noise.pbtxttensorflow.keras.layers.-global-average-pooling1-d.pbtxttensorflow.keras.layers.-global-average-pooling2-d.pbtxttensorflow.keras.layers.-global-average-pooling3-d.pbtxttensorflow.keras.layers.-global-avg-pool1-d.pbtxttensorflow.keras.layers.-global-avg-pool2-d.pbtxttensorflow.keras.layers.-global-avg-pool3-d.pbtxttensorflow.keras.layers.-global-max-pool1-d.pbtxttensorflow.keras.layers.-global-max-pool2-d.pbtxttensorflow.keras.layers.-global-max-pool3-d.pbtxttensorflow.keras.layers.-global-max-pooling1-d.pbtxttensorflow.keras.layers.-global-max-pooling2-d.pbtxttensorflow.keras.layers.-global-max-pooling3-d.pbtxttensorflow.keras.layers.-input-layer.pbtxttensorflow.keras.layers.-l-s-t-m-cell.pbtxttensorflow.keras.layers.-l-s-t-m.pbtxttensorflow.keras.layers.-lambda.pbtxttensorflow.keras.layers.-layer-normalization.pbtxttensorflow.keras.layers.-layer.pbtxttensorflow.keras.layers.-leaky-re-l-u.pbtxttensorflow.keras.layers.-locally-connected1-d.pbtxttensorflow.keras.layers.-locally-connected2-d.pbtxttensorflow.keras.layers.-masking.pbtxttensorflow.keras.layers.-max-pool1-d.pbtxttensorflow.keras.layers.-max-pool2-d.pbtxttensorflow.keras.layers.-max-pool3-d.pbtxttensorflow.keras.layers.-max-pooling1-d.pbtxttensorflow.keras.layers.-max-pooling2-d.pbtxttensorflow.keras.layers.-max-pooling3-d.pbtxttensorflow.keras.layers.-maximum.pbtxttensorflow.keras.layers.-minimum.pbtxttensorflow.keras.layers.-multiply.pbtxttensorflow.keras.layers.-p-re-l-u.pbtxttensorflow.keras.layers.-permute.pbtxttensorflow.keras.layers.-r-n-n.pbtxttensorflow.keras.layers.-re-l-u.pbtxttensorflow.keras.layers.-repeat-vector.pbtxttensorflow.keras.layers.-reshape.pbtxttensorflow.keras.layers.-separable-conv1-d.pbtxttensorflow.keras.layers.-separable-conv2-d.pbtxttensorflow.keras.layers.-separable-convolution1-d.pbtxttensorflow.keras.layers.-separable-convolution2-d.pbtxttensorflow.keras.layers.-simple-r-n-n-cell.pbtxttensorflow.keras.layers.-simple-r-n-n.pbtxttensorflow.keras.layers.-softmax.pbtxttensorflow.keras.layers.-spatial-dropout1-d.pbtxt
@ -328,9 +328,9 @@ class FromSavedModelTest(TestModels):
|
||||
self.assertIn('This converter can only convert a single ConcreteFunction',
|
||||
str(error.exception))
|
||||
|
||||
@test_util.run_v2_only
|
||||
def testKerasSequentialModel(self):
|
||||
"""Test a simple sequential tf.Keras model."""
|
||||
self.skipTest('b/134660903')
|
||||
input_data = constant_op.constant(1., shape=[1, 1])
|
||||
|
||||
x = np.array([[1.], [2.]])
|
||||
|
@ -164,7 +164,7 @@ def _compatible_shapes(flat_relaxed, flat_to_check):
|
||||
for relaxed, to_check in zip(flat_relaxed, flat_to_check))
|
||||
|
||||
|
||||
def _common_shape(x, y):
|
||||
def common_shape(x, y):
|
||||
"""Find a `TensorShape` that is compatible with both `x` and `y`."""
|
||||
if x is None != y is None:
|
||||
raise RuntimeError(
|
||||
@ -1577,7 +1577,7 @@ class Function(object):
|
||||
"relaxed_arg_shapes len: %d vs. %d"
|
||||
% (len(arg_shapes), len(relaxed_arg_shapes)))
|
||||
relaxed_arg_shapes = [
|
||||
_common_shape(x, y) for (x, y) in zip(
|
||||
common_shape(x, y) for (x, y) in zip(
|
||||
arg_shapes, relaxed_arg_shapes)]
|
||||
self._function_cache.arg_relaxed_shapes[rank_only_cache_key] = (
|
||||
relaxed_arg_shapes)
|
||||
@ -1679,8 +1679,9 @@ def register(func, *args, **kwargs):
|
||||
def validate_signature(signature):
|
||||
if any(not isinstance(arg, tensor_spec.TensorSpec)
|
||||
for arg in nest.flatten(signature, expand_composites=True)):
|
||||
raise TypeError("Invalid input_signature %s; input_signature must be "
|
||||
"a possibly nested sequence of TensorSpec objects.")
|
||||
raise TypeError("Invalid input_signature {}; input_signature must be "
|
||||
"a possibly nested sequence of TensorSpec objects."
|
||||
.format(signature))
|
||||
|
||||
|
||||
def defun(func=None,
|
||||
|
@ -747,6 +747,21 @@ class Layer(module.Module):
|
||||
"""Optional regularizer function for the output of this layer."""
|
||||
self._activity_regularizer = regularizer
|
||||
|
||||
@property
|
||||
def input_spec(self):
|
||||
return self._input_spec
|
||||
|
||||
@input_spec.setter
|
||||
# Must be decorated to prevent tracking, since the input_spec can be nested
|
||||
# InputSpec objects.
|
||||
@trackable.no_automatic_dependency_tracking
|
||||
def input_spec(self, value):
|
||||
for v in nest.flatten(value):
|
||||
if v is not None and not isinstance(v, InputSpec):
|
||||
raise TypeError('Layer input_spec must be an instance of InputSpec. '
|
||||
'Got: {}'.format(v))
|
||||
self._input_spec = value
|
||||
|
||||
@property
|
||||
def trainable_weights(self):
|
||||
if self.trainable:
|
||||
@ -2183,8 +2198,10 @@ class Layer(module.Module):
|
||||
# a NotImplementedError.
|
||||
pass
|
||||
if self.input_spec is not None:
|
||||
# Layer's input_spec has already been type-checked in the property setter.
|
||||
metadata['input_spec'] = nest.map_structure(
|
||||
lambda x: x.get_config(), self.input_spec)
|
||||
lambda x: None if x is None else serialize_keras_object(x),
|
||||
self.input_spec)
|
||||
else:
|
||||
metadata['input_spec'] = None
|
||||
if (self.activity_regularizer is not None and
|
||||
|
@ -20,12 +20,12 @@ from __future__ import print_function
|
||||
import functools
|
||||
import json
|
||||
import os
|
||||
import weakref
|
||||
import six
|
||||
|
||||
from tensorflow.python.client import session
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import function as defun
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import tensor_spec
|
||||
@ -38,9 +38,10 @@ from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||
from tensorflow.python.keras.saving import model_from_json
|
||||
from tensorflow.python.keras.saving import saving_utils
|
||||
from tensorflow.python.keras.utils import mode_keys
|
||||
from tensorflow.python.keras.utils import tf_utils
|
||||
from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
|
||||
from tensorflow.python.keras.utils.io_utils import ask_to_proceed_with_overwrite
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import variables
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.saved_model import builder as saved_model_builder
|
||||
@ -712,10 +713,20 @@ def serialize_all_attributes(layer, serialization_cache):
|
||||
if _should_skip_serialization(layer):
|
||||
return serialized_attr
|
||||
|
||||
function_dict = {}
|
||||
if save_model_default_signature:
|
||||
# For compatibility with the tf.Lite Converter, the default save signature
|
||||
# should be traced without nested calls to other wrapped functions.
|
||||
# TODO(kathywu): Investigate why having nested calls results in a stateful
|
||||
# function. Perhaps something to do with losses, which are traced in nested
|
||||
# calls but not in the flat call.
|
||||
function_dict['_default_save_signature'] = _default_save_signature(layer)
|
||||
else:
|
||||
function_dict['_default_save_signature'] = None
|
||||
|
||||
object_dict = _wrap_layer_objects(layer, serialization_cache)
|
||||
try:
|
||||
function_dict = _wrap_layer_functions(layer, serialization_cache,
|
||||
save_model_default_signature)
|
||||
function_dict.update(_wrap_layer_functions(layer, serialization_cache))
|
||||
except (ValueError, TypeError) as e:
|
||||
logging.warning('Skipping full serialization of object {}, because an '
|
||||
'error occurred while tracing layer functions. Error '
|
||||
@ -798,44 +809,53 @@ def _wrap_layer_objects(layer, serialization_cache):
|
||||
wrapped_loss_functions))
|
||||
|
||||
|
||||
def _wrap_layer_functions(layer, serialization_cache,
|
||||
save_model_default_signature=False):
|
||||
def _wrap_layer_functions(layer, serialization_cache):
|
||||
"""Returns dict of wrapped layer call function and losses in tf.functions.
|
||||
|
||||
Args:
|
||||
layer: Keras Layer object.
|
||||
serialization_cache: Dictionary shared between all objects during
|
||||
serialization.
|
||||
save_model_default_signature: Whether to save traced model call function.
|
||||
|
||||
Returns:
|
||||
A dictionary containing all keras tf.functions to serialize. See
|
||||
LayerAttributes and ModelAttributes for the list of all attributes.
|
||||
"""
|
||||
# Since Sequential models may be modified in place using model.add() or
|
||||
# model.pop(), don't use saved functions.
|
||||
if (isinstance(layer, RevivedLayer) and
|
||||
not isinstance(layer, RevivedSequential)):
|
||||
return {fn_name: getattr(layer.keras_api, fn_name, None)
|
||||
for fn_name in LayerAttributes.all_functions}
|
||||
|
||||
# Reset the losses of the layer and its children. The call function in each
|
||||
# child layer is replaced with tf.functions.
|
||||
original_attrs = _replace_child_layer_functions(layer, serialization_cache)
|
||||
original_layer_losses = layer._losses[:] # pylint: disable=protected-access
|
||||
with trackable.no_automatic_dependency_tracking_scope(layer):
|
||||
layer._losses = [] # pylint: disable=protected-access
|
||||
# Note that eager losses do not need to be saved since these functions
|
||||
# create symbolic losses.
|
||||
original_fns = _replace_child_layer_functions(layer, serialization_cache)
|
||||
original_losses = _reset_layer_losses(layer)
|
||||
|
||||
# Wrap all the layer call and activity regularizer functions.
|
||||
call_fn_with_losses = _wrap_call_and_conditional_losses(layer)
|
||||
fns = {'call_and_return_conditional_losses': call_fn_with_losses,
|
||||
'__call__': _extract_outputs_from_fn(layer, call_fn_with_losses)}
|
||||
|
||||
if save_model_default_signature:
|
||||
fns['_default_save_signature'] = saving_utils.trace_model_call(layer)
|
||||
else:
|
||||
fns['_default_save_signature'] = None
|
||||
# Use LayerCallCollection to ensure that all layer call functions (__call__,
|
||||
# call with losses) are traced with the same inputs.
|
||||
call_collection = LayerCallCollection(layer)
|
||||
call_fn_with_losses = call_collection.add_function(
|
||||
_wrap_call_and_conditional_losses(layer),
|
||||
'{}_layer_call_and_return_conditional_losses'.format(layer.name))
|
||||
call_fn = call_collection.add_function(
|
||||
_extract_outputs_from_fn(layer, call_fn_with_losses),
|
||||
'{}_layer_call_fn'.format(layer.name))
|
||||
|
||||
fns = {'call_and_return_conditional_losses': call_fn_with_losses,
|
||||
'__call__': call_fn}
|
||||
|
||||
if layer.activity_regularizer is not None:
|
||||
fns['activity_regularizer_fn'] = _wrap_activity_regularizer(layer)
|
||||
fns['call_and_return_all_conditional_losses'] = (
|
||||
_append_activity_regularizer_loss(
|
||||
layer, call_fn_with_losses, fns['activity_regularizer_fn']))
|
||||
call_collection.add_function(
|
||||
_append_activity_regularizer_loss(call_fn_with_losses,
|
||||
fns['activity_regularizer_fn']),
|
||||
'{}_layer_call_and_return_all_conditional_losses'.format(layer.name)
|
||||
))
|
||||
else:
|
||||
fns['activity_regularizer_fn'] = None
|
||||
fns['call_and_return_all_conditional_losses'] = call_fn_with_losses
|
||||
@ -848,14 +868,21 @@ def _wrap_layer_functions(layer, serialization_cache,
|
||||
if fn is not None and fn.input_signature is not None:
|
||||
fn.get_concrete_function()
|
||||
|
||||
# Restore overwritten functions/losses
|
||||
with trackable.no_automatic_dependency_tracking_scope(layer):
|
||||
layer._losses = original_layer_losses # pylint: disable=protected-access
|
||||
_restore_child_layer_functions(original_attrs)
|
||||
# Restore overwritten functions and losses
|
||||
_restore_child_layer_functions(original_fns)
|
||||
_restore_layer_losses(original_losses)
|
||||
|
||||
return fns
|
||||
|
||||
|
||||
def _default_save_signature(layer):
|
||||
original_losses = _reset_layer_losses(layer)
|
||||
fn = saving_utils.trace_model_call(layer)
|
||||
fn.get_concrete_function()
|
||||
_restore_layer_losses(original_losses)
|
||||
return fn
|
||||
|
||||
|
||||
def _list_all_layers(obj):
|
||||
if isinstance(obj, training_lib.Model):
|
||||
return obj.layers
|
||||
@ -887,11 +914,9 @@ def _replace_child_layer_functions(layer, serialization_cache):
|
||||
Child layer 2: ...
|
||||
}
|
||||
"""
|
||||
original_attrs = {}
|
||||
# pylint: disable=protected-access
|
||||
original_fns = {}
|
||||
for child_layer in _list_all_layers(layer):
|
||||
# Save symbolic layer losses, which will be restored to maintain the same
|
||||
# state.
|
||||
original_attrs[child_layer] = {'losses': child_layer._losses[:]} # pylint: disable=protected-access
|
||||
if child_layer not in serialization_cache[_KERAS_CACHE_KEY]:
|
||||
layer_fns = (serialize_all_attributes(child_layer, serialization_cache)
|
||||
.functions)
|
||||
@ -905,27 +930,46 @@ def _replace_child_layer_functions(layer, serialization_cache):
|
||||
# wrapped. In this case, no replacement is necessary so move on to the
|
||||
# next child.
|
||||
continue
|
||||
|
||||
original_attrs[child_layer]['call'] = child_layer.call
|
||||
original_attrs[child_layer]['activity_regularizer'] = (
|
||||
child_layer.activity_regularizer)
|
||||
original_fns[child_layer] = {
|
||||
'call': child_layer.call,
|
||||
'activity_regularizer': child_layer.activity_regularizer
|
||||
}
|
||||
with trackable.no_automatic_dependency_tracking_scope(child_layer):
|
||||
child_layer.activity_regularizer = layer_fns.get(
|
||||
'activity_regularizer_fn')
|
||||
child_layer.call = _use_wrapped_call(
|
||||
child_layer, layer_fns['call_and_return_conditional_losses'])
|
||||
child_layer._losses = [] # pylint: disable=protected-access
|
||||
return original_attrs
|
||||
return original_fns
|
||||
# pylint: enable=protected-access
|
||||
|
||||
|
||||
def _restore_child_layer_functions(original_attrs):
|
||||
def _restore_child_layer_functions(original_fns):
|
||||
"""Restores attributes replaced with `_replace_child_layer_functions`."""
|
||||
for child_layer, attrs in original_attrs.items():
|
||||
for child_layer, fns in original_fns.items():
|
||||
with trackable.no_automatic_dependency_tracking_scope(child_layer):
|
||||
child_layer._losses = attrs['losses'] # pylint: disable=protected-access
|
||||
if 'call' in attrs:
|
||||
child_layer.call = attrs['call']
|
||||
child_layer.activity_regularizer = attrs['activity_regularizer']
|
||||
child_layer.call = fns['call']
|
||||
child_layer.activity_regularizer = fns['activity_regularizer']
|
||||
|
||||
|
||||
# pylint: disable=protected-access
|
||||
def _reset_layer_losses(parent_layer):
|
||||
"""Resets losses of layer and its sublayers, and returns original losses."""
|
||||
losses_dict = {}
|
||||
for layer in _list_all_layers(parent_layer) + [parent_layer]:
|
||||
losses_dict[layer] = {'losses': layer._losses[:],
|
||||
'eager_losses': layer._eager_losses[:]}
|
||||
with trackable.no_automatic_dependency_tracking_scope(layer):
|
||||
layer._losses = []
|
||||
layer._eager_losses = []
|
||||
return losses_dict
|
||||
|
||||
|
||||
def _restore_layer_losses(losses_dict):
|
||||
for layer in losses_dict:
|
||||
with trackable.no_automatic_dependency_tracking_scope(layer):
|
||||
layer._losses = losses_dict[layer]['losses']
|
||||
layer._eager_losses = losses_dict[layer]['eager_losses']
|
||||
# pylint: enable=protected-access
|
||||
|
||||
|
||||
def _use_wrapped_call(layer, call_fn):
|
||||
@ -946,8 +990,10 @@ def _use_wrapped_call(layer, call_fn):
|
||||
training = kwargs.pop('training', None)
|
||||
if training is None:
|
||||
training = K.learning_phase()
|
||||
training = math_ops.cast(training, dtypes.bool)
|
||||
outputs, losses = call_fn(inputs, training=training)
|
||||
outputs, losses = tf_utils.smart_cond(
|
||||
training,
|
||||
lambda: call_fn(inputs, training=True),
|
||||
lambda: call_fn(inputs, training=False))
|
||||
else:
|
||||
outputs, losses = call_fn(inputs)
|
||||
layer.add_loss(losses, inputs)
|
||||
@ -955,6 +1001,128 @@ def _use_wrapped_call(layer, call_fn):
|
||||
return wrapped_call
|
||||
|
||||
|
||||
class LayerCallCollection(object):
|
||||
"""Groups wrapped layer call functions.
|
||||
|
||||
This is used to ensure that all layer call functions are traced with the same
|
||||
inputs-
|
||||
- call
|
||||
- call_and_return_conditional_losses
|
||||
- call_and_return_all_conditional_losses
|
||||
"""
|
||||
|
||||
def __init__(self, layer):
|
||||
self._layer = layer
|
||||
self._expects_training_arg = layer._expects_training_arg # pylint: disable=protected-access
|
||||
self._input_signature = self._generate_input_signature(layer)
|
||||
self._functions = weakref.WeakValueDictionary()
|
||||
# Bool indicating whether this object is currently tracing the layer call
|
||||
# functions.
|
||||
self.tracing = False
|
||||
|
||||
def _generate_input_signature(self, layer):
|
||||
"""Inspects layer object and returns the inferred input signature.
|
||||
|
||||
Args:
|
||||
layer: Layer object.
|
||||
|
||||
Returns:
|
||||
List of possibly nested TensorSpecs of the layer call function inputs.
|
||||
The list does not contain the `training` argument.
|
||||
"""
|
||||
if (isinstance(layer.call, def_function.Function) and
|
||||
layer.call.input_signature is not None):
|
||||
return layer.call.input_signature
|
||||
else:
|
||||
if isinstance(layer, training_lib.Model):
|
||||
return saving_utils.model_input_signature(layer)
|
||||
elif layer.input_spec is not None:
|
||||
|
||||
def to_tensor_spec_or_none(x):
|
||||
spec = input_spec.to_tensor_spec(x, layer.dtype)
|
||||
# If the shape is too general (e.g. multiple dimensions are allowed),
|
||||
# return None so that separate functions can be generated for each
|
||||
# inferred input signature.
|
||||
# TODO(b/134962016): currently partial signatures are not supported.
|
||||
if spec.shape == tensor_shape.TensorShape(None):
|
||||
return None
|
||||
return spec
|
||||
input_signature = [nest.map_structure(
|
||||
to_tensor_spec_or_none, layer.input_spec)]
|
||||
|
||||
return input_signature
|
||||
else:
|
||||
return None
|
||||
|
||||
def add_trace(self, *args, **kwargs):
|
||||
"""Traces all functions with the same args and kwargs.
|
||||
|
||||
Args:
|
||||
*args: Positional args passed to the original function.
|
||||
**kwargs: Keyword args passed to the original function.
|
||||
"""
|
||||
kwargs = kwargs.copy()
|
||||
self.tracing = True
|
||||
for fn in self._functions.values():
|
||||
# TODO(kathywu): Replace arguments with broader shapes defined in the
|
||||
# input signature.
|
||||
if self._expects_training_arg:
|
||||
kwargs['training'] = False
|
||||
fn.original_get_concrete_function(*args, **kwargs)
|
||||
kwargs['training'] = True
|
||||
fn.original_get_concrete_function(*args, **kwargs)
|
||||
else:
|
||||
fn.original_get_concrete_function(*args, **kwargs)
|
||||
self.tracing = False
|
||||
|
||||
@property
|
||||
def fn_input_signature(self):
|
||||
"""Returns input signature for the wrapped layer call function."""
|
||||
if self._expects_training_arg:
|
||||
# The training arg is left as a python boolean, so the call functions
|
||||
# will not have an input signature (input signatures may only describe
|
||||
# tensor arguments).
|
||||
return None
|
||||
if None in nest.flatten(self._input_signature):
|
||||
# TODO(b/134962016): If input signature cannot be partially defined.
|
||||
return None
|
||||
return self._input_signature
|
||||
|
||||
def add_function(self, python_function, name):
|
||||
"""Adds a layer call function to the collection."""
|
||||
self._functions[name] = fn = LayerCall(
|
||||
self, python_function, name,
|
||||
input_signature=self.fn_input_signature)
|
||||
|
||||
if (None not in nest.flatten(self._input_signature) and
|
||||
self._expects_training_arg):
|
||||
# Manually add traces for layers that expect a training argument and have
|
||||
# a fully defined input signature.
|
||||
self.add_trace(*self._input_signature)
|
||||
return fn
|
||||
|
||||
|
||||
class LayerCall(def_function.Function):
|
||||
"""Function that triggers traces of other functions in the same collection."""
|
||||
|
||||
def __init__(self, call_collection, *args, **kwargs):
|
||||
super(LayerCall, self).__init__(*args, **kwargs)
|
||||
self.call_collection = call_collection
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
if not self.call_collection.tracing:
|
||||
self.call_collection.add_trace(*args, **kwargs)
|
||||
return super(LayerCall, self).__call__(*args, **kwargs)
|
||||
|
||||
def get_concrete_function(self, *args, **kwargs):
|
||||
if not self.call_collection.tracing:
|
||||
self.call_collection.add_trace(*args, **kwargs)
|
||||
return super(LayerCall, self).get_concrete_function(*args, **kwargs)
|
||||
|
||||
def original_get_concrete_function(self, *args, **kwargs):
|
||||
return super(LayerCall, self).get_concrete_function(*args, **kwargs)
|
||||
|
||||
|
||||
def _wrap_call_and_conditional_losses(layer):
|
||||
"""Wraps call function that returns a tuple of (outputs, losses).
|
||||
|
||||
@ -965,51 +1133,19 @@ def _wrap_call_and_conditional_losses(layer):
|
||||
layer: a Keras layer object
|
||||
|
||||
Returns:
|
||||
call function that returns outputs and conditional losses -- excludes
|
||||
python call function that returns outputs and conditional losses -- excludes
|
||||
activity regularizer
|
||||
"""
|
||||
if isinstance(layer, RevivedLayer):
|
||||
return layer.keras_api.call_and_return_conditional_losses
|
||||
|
||||
if (isinstance(layer.call, def_function.Function) and
|
||||
layer.call.input_signature is not None):
|
||||
input_signature = layer.call.input_signature
|
||||
else:
|
||||
if (isinstance(layer, training_lib.Model) and
|
||||
saving_utils.model_input_signature(layer) is not None):
|
||||
input_signature = saving_utils.model_input_signature(layer)
|
||||
elif layer.input_spec is not None:
|
||||
input_signature = [nest.map_structure(
|
||||
lambda x: input_spec.to_tensor_spec(x, layer.dtype),
|
||||
layer.input_spec)]
|
||||
# If input spec is too general, then don't define an input signature.
|
||||
for spec in nest.flatten(input_signature):
|
||||
if spec.shape == tensor_shape.TensorShape(None):
|
||||
input_signature = None
|
||||
break
|
||||
else:
|
||||
input_signature = None
|
||||
|
||||
if input_signature is not None and layer._expects_training_arg: # pylint: disable=protected-access
|
||||
input_signature.append(
|
||||
tensor_spec.TensorSpec(shape=[], dtype=dtypes.bool))
|
||||
|
||||
# Create function that generates both outputs and losses
|
||||
layer_call = layer.call
|
||||
if layer._expects_training_arg: # pylint: disable=protected-access
|
||||
def call_and_return_conditional_losses(inputs, training):
|
||||
_set_symbolic_learning_phase(training)
|
||||
def call_and_return_conditional_losses(inputs, training=False):
|
||||
return layer_call(inputs, training=training), layer.get_losses_for(inputs)
|
||||
else:
|
||||
def call_and_return_conditional_losses(inputs):
|
||||
K.set_learning_phase(0)
|
||||
return layer_call(inputs), layer.get_losses_for(inputs)
|
||||
return def_function.Function(
|
||||
call_and_return_conditional_losses,
|
||||
'{}_layer_call_and_return_conditional_losses'.format(layer.name),
|
||||
input_signature=input_signature,
|
||||
# TODO(kathywu): Investigate autograph error.
|
||||
autograph=False)
|
||||
return call_and_return_conditional_losses
|
||||
|
||||
|
||||
def _extract_outputs_from_fn(layer, call_and_return_conditional_losses):
|
||||
@ -1017,50 +1153,22 @@ def _extract_outputs_from_fn(layer, call_and_return_conditional_losses):
|
||||
if isinstance(layer, RevivedLayer):
|
||||
return layer.keras_api.__call__ # pylint: disable=protected-access
|
||||
if layer._expects_training_arg: # pylint: disable=protected-access
|
||||
def call(inputs, training):
|
||||
return call_and_return_conditional_losses(inputs, training)[0]
|
||||
def call(inputs, training=False):
|
||||
return call_and_return_conditional_losses(inputs, training=training)[0]
|
||||
else:
|
||||
def call(inputs):
|
||||
return call_and_return_conditional_losses(inputs)[0]
|
||||
return def_function.Function(
|
||||
call, '{}_layer_call_fn'.format(layer.name),
|
||||
input_signature=call_and_return_conditional_losses.input_signature,
|
||||
# TODO(kathywu): Investigate autograph error.
|
||||
autograph=False)
|
||||
|
||||
|
||||
def _set_symbolic_learning_phase(value):
|
||||
"""Set learning phase to a tensor value (for internal use only).
|
||||
|
||||
This is used when wrapping call functions as tf.functions that have training
|
||||
as a tensor input. Thus, when `learning_phase()` is called, the training
|
||||
tensor is returned. This function is called when saving a model to SavedModel.
|
||||
|
||||
Args:
|
||||
value: A Tensor object.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input value is not a graph tensor
|
||||
"""
|
||||
graph = K.get_graph()
|
||||
if not isinstance(value, ops.Tensor):
|
||||
raise ValueError('Symbolic learning phase must be a graph tensor.')
|
||||
K._GRAPH_LEARNING_PHASES[graph] = value # pylint: disable=protected-access
|
||||
return call
|
||||
|
||||
|
||||
def _append_activity_regularizer_loss(
|
||||
layer, call_fn_with_losses, activity_regularizer_fn):
|
||||
call_fn_with_losses, activity_regularizer_fn):
|
||||
"""Appends activity regularizer loss to losses returned by the wrapped fn."""
|
||||
def fn(*args):
|
||||
outputs, losses = call_fn_with_losses(*args)
|
||||
def fn(*args, **kwargs):
|
||||
outputs, losses = call_fn_with_losses(*args, **kwargs)
|
||||
losses.append(activity_regularizer_fn(outputs))
|
||||
return outputs, losses
|
||||
return def_function.Function(
|
||||
fn,
|
||||
'{}_layer_call_and_return_all_conditional_losses'.format(layer.name),
|
||||
input_signature=call_fn_with_losses.input_signature,
|
||||
# TODO(kathywu): Investigate autograph error.
|
||||
autograph=False)
|
||||
return fn
|
||||
|
||||
|
||||
def _wrap_unconditional_loss(loss_fn, index):
|
||||
@ -1134,9 +1242,11 @@ class KerasObjectLoader(load.Loader):
|
||||
# pylint: disable=protected-access
|
||||
for node in self._nodes:
|
||||
if isinstance(node, RevivedModel):
|
||||
input_signature = (
|
||||
node.keras_api.call_and_return_conditional_losses.input_signature[0]
|
||||
)
|
||||
call_fn = node.keras_api.call_and_return_conditional_losses
|
||||
if call_fn.input_signature is None:
|
||||
inputs = infer_inputs_from_restored_call_function(call_fn)
|
||||
else:
|
||||
inputs = call_fn.input_signature[0]
|
||||
if isinstance(node, RevivedSequential):
|
||||
with trackable.no_automatic_dependency_tracking_scope(node):
|
||||
node._layers = []
|
||||
@ -1146,7 +1256,7 @@ class KerasObjectLoader(load.Loader):
|
||||
if not node.inputs:
|
||||
# Since this revived object is technically a subclassed model (even if
|
||||
# the original model is functional/sequential), inputs should be set.
|
||||
node._set_inputs(input_signature)
|
||||
node._set_inputs(inputs)
|
||||
if isinstance(node, RevivedLayer):
|
||||
losses = node._serialized_attributes.get('regularization_losses', [])
|
||||
for loss in losses:
|
||||
@ -1218,8 +1328,9 @@ class RevivedLayer(object):
|
||||
if metadata.get('config') is not None:
|
||||
revived_obj._config = metadata['config']
|
||||
if metadata.get('input_spec') is not None:
|
||||
revived_obj.input_spec = input_spec.InputSpec.from_config(
|
||||
metadata['input_spec'])
|
||||
revived_obj.input_spec = recursively_deserialize_keras_object(
|
||||
metadata['input_spec'],
|
||||
module_objects={'InputSpec': input_spec.InputSpec})
|
||||
if metadata.get('activity_regularizer') is not None:
|
||||
revived_obj.activity_regularizer = regularizers.deserialize(
|
||||
metadata['activity_regularizer'])
|
||||
@ -1258,6 +1369,42 @@ class RevivedLayer(object):
|
||||
return call_fn(inputs, *args, **kwargs)
|
||||
|
||||
|
||||
def recursively_deserialize_keras_object(config, module_objects=None):
|
||||
"""Deserialize Keras object from a nested structure."""
|
||||
if isinstance(config, dict):
|
||||
if 'class_name' in config:
|
||||
return deserialize_keras_object(config, module_objects=module_objects)
|
||||
else:
|
||||
return {key: recursively_deserialize_keras_object(config[key],
|
||||
module_objects)
|
||||
for key in config}
|
||||
if isinstance(config, (tuple, list)):
|
||||
return [recursively_deserialize_keras_object(x, module_objects)
|
||||
for x in config]
|
||||
else:
|
||||
raise ValueError('Unable to decode config: {}'.format(config))
|
||||
|
||||
|
||||
def infer_inputs_from_restored_call_function(fn):
|
||||
"""Returns TensorSpec of inputs from a restored call function.
|
||||
|
||||
Args:
|
||||
fn: Restored layer call function. It is assumed that the inputs are entirely
|
||||
in the first argument.
|
||||
|
||||
Returns:
|
||||
TensorSpec of call function inputs.
|
||||
"""
|
||||
def common_spec(x, y):
|
||||
return tensor_spec.TensorSpec(defun.common_shape(x.shape, y.shape),
|
||||
x.dtype, x.name)
|
||||
spec = fn.concrete_functions[0].structured_input_signature[0][0]
|
||||
for concrete in fn.concrete_functions[1:]:
|
||||
spec2 = concrete.structured_input_signature[0][0]
|
||||
spec = nest.map_structure(common_spec, spec, spec2)
|
||||
return spec
|
||||
|
||||
|
||||
class RevivedNetwork(RevivedLayer):
|
||||
"""Keras network of layers loaded from a SavedModel."""
|
||||
|
||||
|
@ -705,14 +705,8 @@ class TestModelSavingAndLoadingV2(keras_parameterized.TestCase):
|
||||
expected_layers = len(model.layers)
|
||||
self.assertEqual(expected_layers, len(loaded.keras_api.layers))
|
||||
input_arr = array_ops.ones((4, 3))
|
||||
training_bool = constant_op.constant(False)
|
||||
|
||||
if model._expects_training_arg:
|
||||
call_args = [input_arr, training_bool]
|
||||
else:
|
||||
call_args = [input_arr]
|
||||
self.assertAllClose(self.evaluate(model(input_arr)),
|
||||
self.evaluate(loaded(*call_args)))
|
||||
self.evaluate(loaded(input_arr)))
|
||||
|
||||
@keras_parameterized.run_with_all_model_types
|
||||
def test_compiled_model(self):
|
||||
@ -747,6 +741,38 @@ class TestModelSavingAndLoadingV2(keras_parameterized.TestCase):
|
||||
model.load_weights(ckpt_path)
|
||||
self.assertAllClose(predict, model.predict(input_arr))
|
||||
|
||||
def test_metadata_input_spec(self):
|
||||
class LayerWithNestedSpec(keras.layers.Layer):
|
||||
|
||||
def __init__(self):
|
||||
super(LayerWithNestedSpec, self).__init__()
|
||||
self.input_spec = {
|
||||
'a': keras.layers.InputSpec(max_ndim=3, axes={-1: 2}),
|
||||
'b': keras.layers.InputSpec(shape=(None, 2, 3), dtype='float16')}
|
||||
|
||||
layer = LayerWithNestedSpec()
|
||||
saved_model_dir = self._save_model_dir()
|
||||
tf_save.save(layer, saved_model_dir)
|
||||
loaded = keras_saved_model.load_from_saved_model_v2(saved_model_dir)
|
||||
self.assertEqual(3, loaded.input_spec['a'].max_ndim)
|
||||
self.assertEqual({-1: 2}, loaded.input_spec['a'].axes)
|
||||
self.assertAllEqual([None, 2, 3], loaded.input_spec['b'].shape)
|
||||
self.assertEqual('float16', loaded.input_spec['b'].dtype)
|
||||
|
||||
def test_multi_input_model(self):
|
||||
input_1 = keras.layers.Input(shape=(3,))
|
||||
input_2 = keras.layers.Input(shape=(5,))
|
||||
model = keras.Model([input_1, input_2], [input_1, input_2])
|
||||
saved_model_dir = self._save_model_dir()
|
||||
|
||||
model.save(saved_model_dir, save_format='tf')
|
||||
loaded = keras_saved_model.load_from_saved_model_v2(saved_model_dir)
|
||||
input_arr_1 = np.random.random((1, 3)).astype('float32')
|
||||
input_arr_2 = np.random.random((1, 5)).astype('float32')
|
||||
|
||||
outputs = loaded([input_arr_1, input_arr_2])
|
||||
self.assertAllEqual(input_arr_1, outputs[0])
|
||||
self.assertAllEqual(input_arr_2, outputs[1])
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
|
@ -66,7 +66,7 @@ def model_input_signature(model):
|
||||
|
||||
Returns:
|
||||
A list containing either a single TensorSpec or an object with nested
|
||||
TensorSpecs.
|
||||
TensorSpecs. This list does not contain the `training` argument.
|
||||
"""
|
||||
try:
|
||||
inputs = model.inputs
|
||||
|
@ -177,11 +177,11 @@ class RestoredFunction(def_function.Function):
|
||||
# TODO(mdan): We may enable autograph once exceptions are supported.
|
||||
super(RestoredFunction, self).__init__(
|
||||
python_function, name, autograph=False)
|
||||
self._concrete_functions = concrete_functions
|
||||
self.concrete_functions = concrete_functions
|
||||
self._function_spec = function_spec
|
||||
|
||||
def _list_all_concrete_functions_for_serialization(self):
|
||||
return self._concrete_functions
|
||||
return self.concrete_functions
|
||||
|
||||
def _defun_with_scope(self, scope):
|
||||
func = super(RestoredFunction, self)._defun_with_scope(scope)
|
||||
|
@ -179,7 +179,7 @@ class LoadTest(test.TestCase, parameterized.TestCase):
|
||||
# Calling get_concrete_function wraps in a second call operation; we want to
|
||||
# inspect the original function body for the control output; digging into
|
||||
# graph.as_graph_def() and its FunctionDefLibrary is another option.
|
||||
imported_concrete, = imported.f._concrete_functions
|
||||
imported_concrete, = imported.f.concrete_functions
|
||||
imported_graph = imported_concrete.graph
|
||||
self.assertIn(
|
||||
imported_graph.get_operation_by_name("should_be_control_output"),
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -39,6 +39,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -68,6 +68,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "kernel_constraint"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -40,6 +40,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -40,6 +40,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -59,6 +59,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "kernel_constraint"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -59,6 +59,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "kernel_constraint"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -33,6 +33,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -36,6 +36,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -55,6 +55,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "kernel_constraint"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -34,6 +34,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
@ -35,6 +35,10 @@ tf_class {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user