diff --git a/tensorflow/g3doc/api_docs/python/contrib.distributions.md b/tensorflow/g3doc/api_docs/python/contrib.distributions.md index bd8e9e8a0b0..896e9fd6c00 100644 --- a/tensorflow/g3doc/api_docs/python/contrib.distributions.md +++ b/tensorflow/g3doc/api_docs/python/contrib.distributions.md @@ -775,29 +775,41 @@ Variance. Binomial distribution. -This distribution is parameterized by a vector `p` of probabilities and `n`, -the total counts. +This distribution is parameterized by `probs`, a (batch of) probabilities for +drawing a `1` and `total_count`, the number of trials per draw from the +Binomial. -#### Mathematical details +#### Mathematical Details -The Binomial is a distribution over the number of successes in `n` independent -trials, with each trial having the same probability of success `p`. -The probability mass function (pmf): +The Binomial is a distribution over the number of `1`'s in `total_count` +independent trials, with each trial having the same probability of `1`, i.e., +`probs`. -```pmf(k) = n! / (k! * (n - k)!) * (p)^k * (1 - p)^(n - k)``` +The probability mass function (pmf) is, + +```none +pmf(k; n, p) = p**k (1 - p)**(n - k) / Z +Z = k! (n - k)! / n! +``` + +where: +* `total_count = n`, +* `probs = p`, +* `Z` is the normalizaing constant, and, +* `n!` is the factorial of `n`. #### Examples Create a single distribution, corresponding to 5 coin flips. ```python -dist = Binomial(n=5., p=.5) +dist = Binomial(total_count=5., probs=.5) ``` Create a single distribution (using logits), corresponding to 5 coin flips. ```python -dist = Binomial(n=5., logits=0.) +dist = Binomial(total_count=5., logits=0.) ``` Creates 3 distributions with the third distribution most likely to have @@ -806,7 +818,7 @@ successes. ```python p = [.2, .3, .8] # n will be broadcast to [4., 4., 4.], to match p. -dist = Binomial(n=4., p=p) +dist = Binomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. @@ -826,45 +838,35 @@ dist.prob(counts) # Shape [5, 7, 3] ``` - - - -#### `tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial')` {#Binomial.__init__} +#### `tf.contrib.distributions.Binomial.__init__(total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name='Binomial')` {#Binomial.__init__} Initialize a batch of Binomial distributions. ##### Args: -* <b>`n`</b>: Non-negative floating point tensor with shape broadcastable to - `[N1,..., Nm]` with `m >= 0` and the same dtype as `p` or `logits`. - Defines this as a batch of `N1 x ... x Nm` different Binomial +* <b>`total_count`</b>: Non-negative floating point tensor with shape broadcastable + to `[N1,..., Nm]` with `m >= 0` and the same dtype as `probs` or + `logits`. Defines this as a batch of `N1 x ... x Nm` different Binomial distributions. Its components should be equal to integer values. * <b>`logits`</b>: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and - the same dtype as `n`. Each entry represents logits for the probability - of success for independent Binomial distributions. Only one of - `logits` or `p` should be passed in. -* <b>`p`</b>: Positive floating point tensor with shape broadcastable to - `[N1,..., Nm]` `m >= 0`, `p in [0, 1]`. Each entry represents the + the same dtype as `total_count`. Each entry represents logits for the probability of success for independent Binomial distributions. Only one - of `logits` or `p` should be passed in. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to assert valid values - for parameters `n`, `p`, and `x` in `prob` and `log_prob`. - If `False` and inputs are invalid, correct behavior is not guaranteed. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: The name to prefix Ops created by this distribution class. - - -* <b>`Examples`</b>: - -```python -# Define 1-batch of a binomial distribution. -dist = Binomial(n=2., p=.9) - -# Define a 2-batch. -dist = Binomial(n=[4., 5], p=[.1, .3]) -``` + of `logits` or `probs` should be passed in. +* <b>`probs`</b>: Positive floating point tensor with shape broadcastable to + `[N1,..., Nm]` `m >= 0`, `probs in [0, 1]`. Each entry represents the + probability of success for independent Binomial distributions. Only one + of `logits` or `probs` should be passed in. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -1142,15 +1144,15 @@ Log probability density/mass function (depending on `is_continuous`). Additional documentation from `Binomial`: -For each batch member of counts `value`, `P[counts]` is the probability that -after sampling `n` draws from this Binomial distribution, the number of -successes is `k`. Note that different sequences of draws can result in the -same counts, thus the probability includes a combinatorial coefficient. +For each batch member of counts `value`, `P[value]` is the probability that +after sampling `self.total_count` draws from this Binomial distribution, the +number of successes is `value`. Since different sequences of draws can result in +the same counts, the probability includes a combinatorial coefficient. -`value` must be a non-negative tensor with dtype `dtype` and whose shape -can be broadcast with `self.p` and `self.n`. `counts` is only legal if it is -less than or equal to `n` and its components are equal to integer -values. +Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape +can be broadcast with `self.probs` and `self.total_count`. `value` is only legal +if it is less than or equal to `self.total_count` and its components are equal +to integer values. ##### Args: @@ -1198,7 +1200,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Binomial.logits` {#Binomial.logits} -Log-odds of success. +Log-odds of drawing a `1`. - - - @@ -1216,16 +1218,10 @@ Mode. Additional documentation from `Binomial`: -Note that when `(n + 1) * p` is an integer, there are actually two -modes. Namely, `(n + 1) * p` and `(n + 1) * p - 1` are both modes. Here -we return only the larger of the two modes. - - -- - - - -#### `tf.contrib.distributions.Binomial.n` {#Binomial.n} - -Number of trials. +Note that when `(1 + total_count) * probs` is an integer, there are +actually two modes. Namely, `(1 + total_count) * probs` and +`(1 + total_count) * probs - 1` are both modes. Here we return only the +larger of the two modes. - - - @@ -1235,13 +1231,6 @@ Number of trials. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Binomial.p` {#Binomial.p} - -Probability of success. - - - - - #### `tf.contrib.distributions.Binomial.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Binomial.param_shapes} @@ -1360,15 +1349,15 @@ Probability density/mass function (depending on `is_continuous`). Additional documentation from `Binomial`: -For each batch member of counts `value`, `P[counts]` is the probability that -after sampling `n` draws from this Binomial distribution, the number of -successes is `k`. Note that different sequences of draws can result in the -same counts, thus the probability includes a combinatorial coefficient. +For each batch member of counts `value`, `P[value]` is the probability that +after sampling `self.total_count` draws from this Binomial distribution, the +number of successes is `value`. Since different sequences of draws can result in +the same counts, the probability includes a combinatorial coefficient. -`value` must be a non-negative tensor with dtype `dtype` and whose shape -can be broadcast with `self.p` and `self.n`. `counts` is only legal if it is -less than or equal to `n` and its components are equal to integer -values. +Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape +can be broadcast with `self.probs` and `self.total_count`. `value` is only legal +if it is less than or equal to `self.total_count` and its components are equal +to integer values. ##### Args: @@ -1383,6 +1372,13 @@ values. values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Binomial.probs` {#Binomial.probs} + +Probability of of drawing a `1`. + + - - - #### `tf.contrib.distributions.Binomial.reparameterization_type` {#Binomial.reparameterization_type} @@ -1453,6 +1449,13 @@ survival_function(x) = P[X > x] `self.dtype`. +- - - + +#### `tf.contrib.distributions.Binomial.total_count` {#Binomial.total_count} + +Number of trials. + + - - - #### `tf.contrib.distributions.Binomial.validate_args` {#Binomial.validate_args} @@ -1474,34 +1477,35 @@ Variance. Bernoulli distribution. -The Bernoulli distribution is parameterized by p, the probability of a -positive event. +The Bernoulli distribution with `probs` parameter, i.e., the probability of a +`1` outcome (vs a `0` outcome). - - - -#### `tf.contrib.distributions.Bernoulli.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli')` {#Bernoulli.__init__} +#### `tf.contrib.distributions.Bernoulli.__init__(logits=None, probs=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli')` {#Bernoulli.__init__} Construct Bernoulli distributions. ##### Args: -* <b>`logits`</b>: An N-D `Tensor` representing the log-odds - of a positive event. Each entry in the `Tensor` parametrizes - an independent Bernoulli distribution where the probability of an event - is sigmoid(logits). Only one of `logits` or `p` should be passed in. -* <b>`p`</b>: An N-D `Tensor` representing the probability of a positive - event. Each entry in the `Tensor` parameterizes an independent - Bernoulli distribution. Only one of `logits` or `p` should be passed - in. -* <b>`dtype`</b>: dtype for samples. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to validate that - `0 <= p <= 1`. If `validate_args` is `False`, and the inputs are - invalid, methods like `log_pmf` may return `NaN` values. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: A name for this distribution. +* <b>`logits`</b>: An N-D `Tensor` representing the log-odds of a `1` event. Each + entry in the `Tensor` parametrizes an independent Bernoulli distribution + where the probability of an event is sigmoid(logits). Only one of + `logits` or `probs` should be passed in. +* <b>`probs`</b>: An N-D `Tensor` representing the probability of a `1` + event. Each entry in the `Tensor` parameterizes an independent + Bernoulli distribution. Only one of `logits` or `probs` should be passed + in. +* <b>`dtype`</b>: The type of the event samples. Default: `int32`. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, + statistics (e.g., mean, mode, variance) use the value "`NaN`" to + indicate the result is undefined. When `False`, an exception is raised + if one or more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. ##### Raises: @@ -1827,7 +1831,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Bernoulli.logits` {#Bernoulli.logits} -Log-odds of success. +Log-odds of a `1` outcome (vs `0`). - - - @@ -1845,7 +1849,7 @@ Mode. Additional documentation from `Bernoulli`: -Returns `1` if `p > 1-p` and `0` otherwise. +Returns `1` if `prob > 0.5` and `0` otherwise. - - - @@ -1855,13 +1859,6 @@ Returns `1` if `p > 1-p` and `0` otherwise. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Bernoulli.p` {#Bernoulli.p} - -Probability of success. - - - - - #### `tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Bernoulli.param_shapes} @@ -1992,9 +1989,9 @@ Probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.Bernoulli.q` {#Bernoulli.q} +#### `tf.contrib.distributions.Bernoulli.probs` {#Bernoulli.probs} -1-p. +Probability of a `1` outcome (vs `0`). - - - @@ -2084,19 +2081,19 @@ Variance. - - - -### `class tf.contrib.distributions.BernoulliWithSigmoidP` {#BernoulliWithSigmoidP} +### `class tf.contrib.distributions.BernoulliWithSigmoidProbs` {#BernoulliWithSigmoidProbs} -Bernoulli with `p = sigmoid(p)`. +Bernoulli with `probs = nn.sigmoid(logits)`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP')` {#BernoulliWithSigmoidP.__init__} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.__init__(logits=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidProbs')` {#BernoulliWithSigmoidProbs.__init__} - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.allow_nan_stats` {#BernoulliWithSigmoidP.allow_nan_stats} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.allow_nan_stats` {#BernoulliWithSigmoidProbs.allow_nan_stats} Python boolean describing behavior when a stat is undefined. @@ -2117,7 +2114,7 @@ undefined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.batch_shape(name='batch_shape')` {#BernoulliWithSigmoidP.batch_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.batch_shape(name='batch_shape')` {#BernoulliWithSigmoidProbs.batch_shape} Shape of a single sample from a single event index as a 1-D `Tensor`. @@ -2137,7 +2134,7 @@ independent distributions of this kind the instance represents. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.cdf(value, name='cdf')` {#BernoulliWithSigmoidP.cdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.cdf(value, name='cdf')` {#BernoulliWithSigmoidProbs.cdf} Cumulative distribution function. @@ -2162,7 +2159,7 @@ cdf(x) := P[X <= x] - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.copy(**override_parameters_kwargs)` {#BernoulliWithSigmoidP.copy} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.copy(**override_parameters_kwargs)` {#BernoulliWithSigmoidProbs.copy} Creates a deep copy of the distribution. @@ -2185,21 +2182,21 @@ intialization arguments. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.dtype` {#BernoulliWithSigmoidP.dtype} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.dtype` {#BernoulliWithSigmoidProbs.dtype} The `DType` of `Tensor`s handled by this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.entropy(name='entropy')` {#BernoulliWithSigmoidP.entropy} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.entropy(name='entropy')` {#BernoulliWithSigmoidProbs.entropy} Shannon entropy in nats. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape')` {#BernoulliWithSigmoidP.event_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.event_shape(name='event_shape')` {#BernoulliWithSigmoidProbs.event_shape} Shape of a single sample from a single batch as a 1-D int32 `Tensor`. @@ -2216,7 +2213,7 @@ Shape of a single sample from a single batch as a 1-D int32 `Tensor`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.get_batch_shape()` {#BernoulliWithSigmoidP.get_batch_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.get_batch_shape()` {#BernoulliWithSigmoidProbs.get_batch_shape} Shape of a single sample from a single event index as a `TensorShape`. @@ -2230,7 +2227,7 @@ Same meaning as `batch_shape`. May be only partially defined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.get_event_shape()` {#BernoulliWithSigmoidP.get_event_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.get_event_shape()` {#BernoulliWithSigmoidProbs.get_event_shape} Shape of a single sample from a single batch as a `TensorShape`. @@ -2244,14 +2241,14 @@ Same meaning as `event_shape`. May be only partially defined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous` {#BernoulliWithSigmoidP.is_continuous} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_continuous` {#BernoulliWithSigmoidProbs.is_continuous} - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_scalar_batch(name='is_scalar_batch')` {#BernoulliWithSigmoidP.is_scalar_batch} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_scalar_batch(name='is_scalar_batch')` {#BernoulliWithSigmoidProbs.is_scalar_batch} Indicates that `batch_shape == []`. @@ -2268,7 +2265,7 @@ Indicates that `batch_shape == []`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_scalar_event(name='is_scalar_event')` {#BernoulliWithSigmoidP.is_scalar_event} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_scalar_event(name='is_scalar_event')` {#BernoulliWithSigmoidProbs.is_scalar_event} Indicates that `event_shape == []`. @@ -2285,7 +2282,7 @@ Indicates that `event_shape == []`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_cdf(value, name='log_cdf')` {#BernoulliWithSigmoidP.log_cdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_cdf(value, name='log_cdf')` {#BernoulliWithSigmoidProbs.log_cdf} Log cumulative distribution function. @@ -2314,7 +2311,7 @@ a more accurate answer than simply taking the logarithm of the `cdf` when - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf(value, name='log_pdf')` {#BernoulliWithSigmoidP.log_pdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_pdf(value, name='log_pdf')` {#BernoulliWithSigmoidProbs.log_pdf} Log probability density function. @@ -2338,7 +2335,7 @@ Log probability density function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf')` {#BernoulliWithSigmoidP.log_pmf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_pmf(value, name='log_pmf')` {#BernoulliWithSigmoidProbs.log_pmf} Log probability mass function. @@ -2362,7 +2359,7 @@ Log probability mass function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_prob(value, name='log_prob')` {#BernoulliWithSigmoidP.log_prob} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_prob(value, name='log_prob')` {#BernoulliWithSigmoidProbs.log_prob} Log probability density/mass function (depending on `is_continuous`). @@ -2381,7 +2378,7 @@ Log probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function(value, name='log_survival_function')` {#BernoulliWithSigmoidP.log_survival_function} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_survival_function(value, name='log_survival_function')` {#BernoulliWithSigmoidProbs.log_survival_function} Log survival function. @@ -2410,46 +2407,39 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.logits` {#BernoulliWithSigmoidP.logits} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.logits` {#BernoulliWithSigmoidProbs.logits} -Log-odds of success. +Log-odds of a `1` outcome (vs `0`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.mean(name='mean')` {#BernoulliWithSigmoidP.mean} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.mean(name='mean')` {#BernoulliWithSigmoidProbs.mean} Mean. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.mode(name='mode')` {#BernoulliWithSigmoidP.mode} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.mode(name='mode')` {#BernoulliWithSigmoidProbs.mode} Mode. Additional documentation from `Bernoulli`: -Returns `1` if `p > 1-p` and `0` otherwise. +Returns `1` if `prob > 0.5` and `0` otherwise. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.name` {#BernoulliWithSigmoidP.name} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.name` {#BernoulliWithSigmoidProbs.name} Name prepended to all ops created by this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.p` {#BernoulliWithSigmoidP.p} - -Probability of success. - - -- - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#BernoulliWithSigmoidP.param_shapes} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#BernoulliWithSigmoidProbs.param_shapes} Shapes of parameters given the desired shape of a call to `sample()`. @@ -2473,7 +2463,7 @@ Subclasses should override class method `_param_shapes`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.param_static_shapes(cls, sample_shape)` {#BernoulliWithSigmoidP.param_static_shapes} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.param_static_shapes(cls, sample_shape)` {#BernoulliWithSigmoidProbs.param_static_shapes} param_shapes with static (i.e. `TensorShape`) shapes. @@ -2503,14 +2493,14 @@ constant-valued tensors when constant values are fed. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.parameters` {#BernoulliWithSigmoidP.parameters} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.parameters` {#BernoulliWithSigmoidProbs.parameters} Dictionary of parameters used to instantiate this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.pdf(value, name='pdf')` {#BernoulliWithSigmoidP.pdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.pdf(value, name='pdf')` {#BernoulliWithSigmoidProbs.pdf} Probability density function. @@ -2534,7 +2524,7 @@ Probability density function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.pmf(value, name='pmf')` {#BernoulliWithSigmoidP.pmf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.pmf(value, name='pmf')` {#BernoulliWithSigmoidProbs.pmf} Probability mass function. @@ -2558,7 +2548,7 @@ Probability mass function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.prob(value, name='prob')` {#BernoulliWithSigmoidP.prob} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.prob(value, name='prob')` {#BernoulliWithSigmoidProbs.prob} Probability density/mass function (depending on `is_continuous`). @@ -2577,14 +2567,14 @@ Probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.q` {#BernoulliWithSigmoidP.q} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.probs` {#BernoulliWithSigmoidProbs.probs} -1-p. +Probability of a `1` outcome (vs `0`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.reparameterization_type` {#BernoulliWithSigmoidP.reparameterization_type} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.reparameterization_type` {#BernoulliWithSigmoidProbs.reparameterization_type} Describes how samples from the distribution are reparameterized. @@ -2599,7 +2589,7 @@ or `distributions.NOT_REPARAMETERIZED`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.sample(sample_shape=(), seed=None, name='sample')` {#BernoulliWithSigmoidP.sample} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.sample(sample_shape=(), seed=None, name='sample')` {#BernoulliWithSigmoidProbs.sample} Generate samples of the specified shape. @@ -2621,14 +2611,14 @@ sample. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.stddev(name='stddev')` {#BernoulliWithSigmoidP.stddev} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.stddev(name='stddev')` {#BernoulliWithSigmoidProbs.stddev} Standard deviation. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.survival_function(value, name='survival_function')` {#BernoulliWithSigmoidP.survival_function} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.survival_function(value, name='survival_function')` {#BernoulliWithSigmoidProbs.survival_function} Survival function. @@ -2654,14 +2644,14 @@ survival_function(x) = P[X > x] - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.validate_args` {#BernoulliWithSigmoidP.validate_args} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.validate_args` {#BernoulliWithSigmoidProbs.validate_args} Python boolean indicated possibly expensive checks are enabled. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.variance(name='variance')` {#BernoulliWithSigmoidP.variance} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.variance(name='variance')` {#BernoulliWithSigmoidProbs.variance} Variance. @@ -3980,7 +3970,7 @@ drawn from. ```python p = [0.1, 0.5, 0.4] -dist = Categorical(p=p) +dist = Categorical(probs=p) ``` Creates a 3-class distiribution, with the 2nd class the most likely to be @@ -3997,7 +3987,7 @@ The distribution functions can be evaluated on counts. ```python # counts is a scalar. p = [0.1, 0.4, 0.5] -dist = Categorical(p=p) +dist = Categorical(probs=p) dist.pmf(0) # Shape [] # p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match counts. @@ -4010,7 +4000,7 @@ dist.pmf(counts) # Shape [5, 7, 3] ``` - - - -#### `tf.contrib.distributions.Categorical.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} +#### `tf.contrib.distributions.Categorical.__init__(logits=None, probs=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} Initialize Categorical distributions using class log-probabilities. @@ -4018,22 +4008,25 @@ Initialize Categorical distributions using class log-probabilities. * <b>`logits`</b>: An N-D `Tensor`, `N >= 1`, representing the log probabilities - of a set of Categorical distributions. The first `N - 1` dimensions - index into a batch of independent distributions and the last dimension - represents a vector of logits for each class. Only one of `logits` or - `p` should be passed in. -* <b>`p`</b>: An N-D `Tensor`, `N >= 1`, representing the probabilities - of a set of Categorical distributions. The first `N - 1` dimensions - index into a batch of independent distributions and the last dimension - represents a vector of probabilities for each class. Only one of - `logits` or `p` should be passed in. + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of logits for each class. Only one of `logits` or + `probs` should be passed in. +* <b>`probs`</b>: An N-D `Tensor`, `N >= 1`, representing the probabilities + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of probabilities for each class. Only one of + `logits` or `probs` should be passed in. * <b>`dtype`</b>: The type of the event samples (default: int32). -* <b>`validate_args`</b>: Unused in this distribution. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: A name for this distribution (optional). +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -4385,15 +4378,6 @@ Name prepended to all ops created by this `Distribution`. Scalar `int32` tensor: the number of classes. -- - - - -#### `tf.contrib.distributions.Categorical.p` {#Categorical.p} - -Vector of probabilities summing to one. - -Each element is the probability of drawing that coordinate. - - - - - #### `tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Categorical.param_shapes} @@ -4522,6 +4506,15 @@ Probability density/mass function (depending on `is_continuous`). values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Categorical.probs` {#Categorical.probs} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Categorical.reparameterization_type` {#Categorical.reparameterization_type} @@ -19248,36 +19241,50 @@ Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 * Multinomial distribution. -This distribution is parameterized by a vector `p` of probability -parameters for `k` classes and `n`, the counts per each class.. +This Multinomial distribution is parameterized by `probs`, a (batch of) +length-`k` `prob` (probability) vectors (`k > 1`) such that +`tf.reduce_sum(probs, -1) = 1`, and a `total_count` number of trials, i.e., +the number of trials per draw from the Multinomial. It is defined over a +(batch of) length-`k` vector `counts` such that +`tf.reduce_sum(counts, -1) = total_count`. The Multinomial is identically the +Binomial distribution when `k = 2`. -#### Mathematical details +#### Mathematical Details -The Multinomial is a distribution over k-class count data, meaning -for each k-tuple of non-negative integer `counts = [n_1,...,n_k]`, we have a -probability of these draws being made from the distribution. The distribution -has hyperparameters `p = (p_1,...,p_k)`, and probability mass -function (pmf): +The Multinomial is a distribution over `k`-class counts, i.e., a length-`k` +vector of non-negative integer `counts = n = [n_0, ..., n_{k-1}]`. -```pmf(counts) = n! / (n_1!...n_k!) * (p_1)^n_1*(p_2)^n_2*...(p_k)^n_k``` +The probability mass function (pmf) is, -where above `n = sum_j n_j`, `n!` is `n` factorial. +```none +pmf(n; pi, N) = prod_j (pi_j)**n_j / Z +Z = (prod_j n_j!) / N! +``` + +where: +* `probs = pi = [pi_0, ..., pi_{k-1}]`, `pi_j > 0`, `sum_j pi_j = 1`, +* `total_count = N`, `N` a positive integer, +* `Z` is the normalization constant, and, +* `N!` denotes `N` factorial. + +Distribution parameters are automatically broadcast in all functions; see +examples for details. #### Examples Create a 3-class distribution, with the 3rd class is most likely to be drawn, -using logits.. +using logits. ```python logits = [-50., -43, 0] -dist = Multinomial(n=4., logits=logits) +dist = Multinomial(total_count=4., logits=logits) ``` Create a 3-class distribution, with the 3rd class is most likely to be drawn. ```python p = [.2, .3, .5] -dist = Multinomial(n=4., p=p) +dist = Multinomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. @@ -19300,54 +19307,43 @@ Create a 2-batch of 3-class distributions. ```python p = [[.1, .2, .7], [.3, .3, .4]] # Shape [2, 3] -dist = Multinomial(n=[4., 5], p=p) +dist = Multinomial(total_count=[4., 5], probs=p) counts = [[2., 1, 1], [3, 1, 1]] dist.prob(counts) # Shape [2] ``` - - - -#### `tf.contrib.distributions.Multinomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Multinomial')` {#Multinomial.__init__} +#### `tf.contrib.distributions.Multinomial.__init__(total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name='Multinomial')` {#Multinomial.__init__} Initialize a batch of Multinomial distributions. ##### Args: -* <b>`n`</b>: Non-negative floating point tensor with shape broadcastable to - `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of +* <b>`total_count`</b>: Non-negative floating point tensor with shape broadcastable + to `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of `N1 x ... x Nm` different Multinomial distributions. Its components should be equal to integer values. * <b>`logits`</b>: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm, k], m >= 0`, - and the same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` - different `k` class Multinomial distributions. Only one of `logits` or - `p` should be passed in. -* <b>`p`</b>: Positive floating point tensor with shape broadcastable to - `[N1,..., Nm, k]` `m >= 0` and same dtype as `n`. Defines this as - a batch of `N1 x ... x Nm` different `k` class Multinomial - distributions. `p`'s components in the last portion of its shape should - sum up to 1. Only one of `logits` or `p` should be passed in. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to assert valid - values for parameters `n` and `p`, and `x` in `prob` and `log_prob`. - If `False`, correct behavior is not guaranteed. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: The name to prefix Ops created by this distribution class. - - -* <b>`Examples`</b>: - -```python -# Define 1-batch of 2-class multinomial distribution, -# also known as a Binomial distribution. -dist = Multinomial(n=2., p=[.1, .9]) - -# Define a 2-batch of 3-class distributions. -dist = Multinomial(n=[4., 5], p=[[.1, .3, .6], [.4, .05, .55]]) -``` + and the same dtype as `total_count`. Defines this as a batch of + `N1 x ... x Nm` different `k` class Multinomial distributions. Only one + of `logits` or `probs` should be passed in. +* <b>`probs`</b>: Positive floating point tensor with shape broadcastable to + `[N1,..., Nm, k]` `m >= 0` and same dtype as `total_count`. Defines + this as a batch of `N1 x ... x Nm` different `k` class Multinomial + distributions. `probs`'s components in the last portion of its shape + should sum to `1`. Only one of `logits` or `probs` should be passed in. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -19625,17 +19621,18 @@ Log probability density/mass function (depending on `is_continuous`). Additional documentation from `Multinomial`: -For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability -that after sampling `n` draws from this Multinomial distribution, the -number of draws falling in class `j` is `n_j`. Note that different -sequences of draws can result in the same counts, thus the probability -includes a combinatorial coefficient. +For each batch of counts, `value = [n_0, ... +,n_{k-1}]`, `P[value]` is the probability that after sampling `self.total_count` +draws from this Multinomial distribution, the number of draws falling in class +`j` is `n_j`. Since this definition is [exchangeable]( +https://en.wikipedia.org/wiki/Exchangeable_random_variables); different +sequences have the same counts so the probability includes a combinatorial +coefficient. -Note that input "counts" must be a non-negative tensor with dtype `dtype` -and whose shape can be broadcast with `self.p` and `self.n`. For fixed -leading dimensions, the last dimension represents counts for the -corresponding Multinomial distribution in `self.p`. `counts` is only legal -if it sums up to `n` and its components are equal to integer values. +Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no +fractional components, and such that +`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable +with `self.probs` and `self.total_count`. ##### Args: @@ -19700,13 +19697,6 @@ Mean. Mode. -- - - - -#### `tf.contrib.distributions.Multinomial.n` {#Multinomial.n} - -Number of trials. - - - - - #### `tf.contrib.distributions.Multinomial.name` {#Multinomial.name} @@ -19714,15 +19704,6 @@ Number of trials. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Multinomial.p` {#Multinomial.p} - -Vector of probabilities summing to one. - -Each element is the probability of drawing that coordinate. - - - - - #### `tf.contrib.distributions.Multinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Multinomial.param_shapes} @@ -19841,17 +19822,18 @@ Probability density/mass function (depending on `is_continuous`). Additional documentation from `Multinomial`: -For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability -that after sampling `n` draws from this Multinomial distribution, the -number of draws falling in class `j` is `n_j`. Note that different -sequences of draws can result in the same counts, thus the probability -includes a combinatorial coefficient. +For each batch of counts, `value = [n_0, ... +,n_{k-1}]`, `P[value]` is the probability that after sampling `self.total_count` +draws from this Multinomial distribution, the number of draws falling in class +`j` is `n_j`. Since this definition is [exchangeable]( +https://en.wikipedia.org/wiki/Exchangeable_random_variables); different +sequences have the same counts so the probability includes a combinatorial +coefficient. -Note that input "counts" must be a non-negative tensor with dtype `dtype` -and whose shape can be broadcast with `self.p` and `self.n`. For fixed -leading dimensions, the last dimension represents counts for the -corresponding Multinomial distribution in `self.p`. `counts` is only legal -if it sums up to `n` and its components are equal to integer values. +Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no +fractional components, and such that +`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable +with `self.probs` and `self.total_count`. ##### Args: @@ -19866,6 +19848,15 @@ if it sums up to `n` and its components are equal to integer values. values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Multinomial.probs` {#Multinomial.probs} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Multinomial.reparameterization_type` {#Multinomial.reparameterization_type} @@ -19936,6 +19927,13 @@ survival_function(x) = P[X > x] `self.dtype`. +- - - + +#### `tf.contrib.distributions.Multinomial.total_count` {#Multinomial.total_count} + +Number of trials used to construct a sample. + + - - - #### `tf.contrib.distributions.Multinomial.validate_args` {#Multinomial.validate_args} diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md index 932a61267d3..42887b2c0f7 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md @@ -1,33 +1,34 @@ Bernoulli distribution. -The Bernoulli distribution is parameterized by p, the probability of a -positive event. +The Bernoulli distribution with `probs` parameter, i.e., the probability of a +`1` outcome (vs a `0` outcome). - - - -#### `tf.contrib.distributions.Bernoulli.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli')` {#Bernoulli.__init__} +#### `tf.contrib.distributions.Bernoulli.__init__(logits=None, probs=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli')` {#Bernoulli.__init__} Construct Bernoulli distributions. ##### Args: -* <b>`logits`</b>: An N-D `Tensor` representing the log-odds - of a positive event. Each entry in the `Tensor` parametrizes - an independent Bernoulli distribution where the probability of an event - is sigmoid(logits). Only one of `logits` or `p` should be passed in. -* <b>`p`</b>: An N-D `Tensor` representing the probability of a positive - event. Each entry in the `Tensor` parameterizes an independent - Bernoulli distribution. Only one of `logits` or `p` should be passed - in. -* <b>`dtype`</b>: dtype for samples. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to validate that - `0 <= p <= 1`. If `validate_args` is `False`, and the inputs are - invalid, methods like `log_pmf` may return `NaN` values. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: A name for this distribution. +* <b>`logits`</b>: An N-D `Tensor` representing the log-odds of a `1` event. Each + entry in the `Tensor` parametrizes an independent Bernoulli distribution + where the probability of an event is sigmoid(logits). Only one of + `logits` or `probs` should be passed in. +* <b>`probs`</b>: An N-D `Tensor` representing the probability of a `1` + event. Each entry in the `Tensor` parameterizes an independent + Bernoulli distribution. Only one of `logits` or `probs` should be passed + in. +* <b>`dtype`</b>: The type of the event samples. Default: `int32`. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, + statistics (e.g., mean, mode, variance) use the value "`NaN`" to + indicate the result is undefined. When `False`, an exception is raised + if one or more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. ##### Raises: @@ -353,7 +354,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Bernoulli.logits` {#Bernoulli.logits} -Log-odds of success. +Log-odds of a `1` outcome (vs `0`). - - - @@ -371,7 +372,7 @@ Mode. Additional documentation from `Bernoulli`: -Returns `1` if `p > 1-p` and `0` otherwise. +Returns `1` if `prob > 0.5` and `0` otherwise. - - - @@ -381,13 +382,6 @@ Returns `1` if `p > 1-p` and `0` otherwise. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Bernoulli.p` {#Bernoulli.p} - -Probability of success. - - - - - #### `tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Bernoulli.param_shapes} @@ -518,9 +512,9 @@ Probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.Bernoulli.q` {#Bernoulli.q} +#### `tf.contrib.distributions.Bernoulli.probs` {#Bernoulli.probs} -1-p. +Probability of a `1` outcome (vs `0`). - - - diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md index ac90f6b7cd3..052c16a821f 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md @@ -10,7 +10,7 @@ drawn from. ```python p = [0.1, 0.5, 0.4] -dist = Categorical(p=p) +dist = Categorical(probs=p) ``` Creates a 3-class distiribution, with the 2nd class the most likely to be @@ -27,7 +27,7 @@ The distribution functions can be evaluated on counts. ```python # counts is a scalar. p = [0.1, 0.4, 0.5] -dist = Categorical(p=p) +dist = Categorical(probs=p) dist.pmf(0) # Shape [] # p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match counts. @@ -40,7 +40,7 @@ dist.pmf(counts) # Shape [5, 7, 3] ``` - - - -#### `tf.contrib.distributions.Categorical.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} +#### `tf.contrib.distributions.Categorical.__init__(logits=None, probs=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} Initialize Categorical distributions using class log-probabilities. @@ -48,22 +48,25 @@ Initialize Categorical distributions using class log-probabilities. * <b>`logits`</b>: An N-D `Tensor`, `N >= 1`, representing the log probabilities - of a set of Categorical distributions. The first `N - 1` dimensions - index into a batch of independent distributions and the last dimension - represents a vector of logits for each class. Only one of `logits` or - `p` should be passed in. -* <b>`p`</b>: An N-D `Tensor`, `N >= 1`, representing the probabilities - of a set of Categorical distributions. The first `N - 1` dimensions - index into a batch of independent distributions and the last dimension - represents a vector of probabilities for each class. Only one of - `logits` or `p` should be passed in. + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of logits for each class. Only one of `logits` or + `probs` should be passed in. +* <b>`probs`</b>: An N-D `Tensor`, `N >= 1`, representing the probabilities + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of probabilities for each class. Only one of + `logits` or `probs` should be passed in. * <b>`dtype`</b>: The type of the event samples (default: int32). -* <b>`validate_args`</b>: Unused in this distribution. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: A name for this distribution (optional). +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -415,15 +418,6 @@ Name prepended to all ops created by this `Distribution`. Scalar `int32` tensor: the number of classes. -- - - - -#### `tf.contrib.distributions.Categorical.p` {#Categorical.p} - -Vector of probabilities summing to one. - -Each element is the probability of drawing that coordinate. - - - - - #### `tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Categorical.param_shapes} @@ -552,6 +546,15 @@ Probability density/mass function (depending on `is_continuous`). values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Categorical.probs` {#Categorical.probs} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Categorical.reparameterization_type` {#Categorical.reparameterization_type} diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md index 2a06a25642a..47b1279bd36 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md @@ -1,28 +1,40 @@ Binomial distribution. -This distribution is parameterized by a vector `p` of probabilities and `n`, -the total counts. +This distribution is parameterized by `probs`, a (batch of) probabilities for +drawing a `1` and `total_count`, the number of trials per draw from the +Binomial. -#### Mathematical details +#### Mathematical Details -The Binomial is a distribution over the number of successes in `n` independent -trials, with each trial having the same probability of success `p`. -The probability mass function (pmf): +The Binomial is a distribution over the number of `1`'s in `total_count` +independent trials, with each trial having the same probability of `1`, i.e., +`probs`. -```pmf(k) = n! / (k! * (n - k)!) * (p)^k * (1 - p)^(n - k)``` +The probability mass function (pmf) is, + +```none +pmf(k; n, p) = p**k (1 - p)**(n - k) / Z +Z = k! (n - k)! / n! +``` + +where: +* `total_count = n`, +* `probs = p`, +* `Z` is the normalizaing constant, and, +* `n!` is the factorial of `n`. #### Examples Create a single distribution, corresponding to 5 coin flips. ```python -dist = Binomial(n=5., p=.5) +dist = Binomial(total_count=5., probs=.5) ``` Create a single distribution (using logits), corresponding to 5 coin flips. ```python -dist = Binomial(n=5., logits=0.) +dist = Binomial(total_count=5., logits=0.) ``` Creates 3 distributions with the third distribution most likely to have @@ -31,7 +43,7 @@ successes. ```python p = [.2, .3, .8] # n will be broadcast to [4., 4., 4.], to match p. -dist = Binomial(n=4., p=p) +dist = Binomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. @@ -51,45 +63,35 @@ dist.prob(counts) # Shape [5, 7, 3] ``` - - - -#### `tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial')` {#Binomial.__init__} +#### `tf.contrib.distributions.Binomial.__init__(total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name='Binomial')` {#Binomial.__init__} Initialize a batch of Binomial distributions. ##### Args: -* <b>`n`</b>: Non-negative floating point tensor with shape broadcastable to - `[N1,..., Nm]` with `m >= 0` and the same dtype as `p` or `logits`. - Defines this as a batch of `N1 x ... x Nm` different Binomial +* <b>`total_count`</b>: Non-negative floating point tensor with shape broadcastable + to `[N1,..., Nm]` with `m >= 0` and the same dtype as `probs` or + `logits`. Defines this as a batch of `N1 x ... x Nm` different Binomial distributions. Its components should be equal to integer values. * <b>`logits`</b>: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and - the same dtype as `n`. Each entry represents logits for the probability - of success for independent Binomial distributions. Only one of - `logits` or `p` should be passed in. -* <b>`p`</b>: Positive floating point tensor with shape broadcastable to - `[N1,..., Nm]` `m >= 0`, `p in [0, 1]`. Each entry represents the + the same dtype as `total_count`. Each entry represents logits for the probability of success for independent Binomial distributions. Only one - of `logits` or `p` should be passed in. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to assert valid values - for parameters `n`, `p`, and `x` in `prob` and `log_prob`. - If `False` and inputs are invalid, correct behavior is not guaranteed. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: The name to prefix Ops created by this distribution class. - - -* <b>`Examples`</b>: - -```python -# Define 1-batch of a binomial distribution. -dist = Binomial(n=2., p=.9) - -# Define a 2-batch. -dist = Binomial(n=[4., 5], p=[.1, .3]) -``` + of `logits` or `probs` should be passed in. +* <b>`probs`</b>: Positive floating point tensor with shape broadcastable to + `[N1,..., Nm]` `m >= 0`, `probs in [0, 1]`. Each entry represents the + probability of success for independent Binomial distributions. Only one + of `logits` or `probs` should be passed in. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -367,15 +369,15 @@ Log probability density/mass function (depending on `is_continuous`). Additional documentation from `Binomial`: -For each batch member of counts `value`, `P[counts]` is the probability that -after sampling `n` draws from this Binomial distribution, the number of -successes is `k`. Note that different sequences of draws can result in the -same counts, thus the probability includes a combinatorial coefficient. +For each batch member of counts `value`, `P[value]` is the probability that +after sampling `self.total_count` draws from this Binomial distribution, the +number of successes is `value`. Since different sequences of draws can result in +the same counts, the probability includes a combinatorial coefficient. -`value` must be a non-negative tensor with dtype `dtype` and whose shape -can be broadcast with `self.p` and `self.n`. `counts` is only legal if it is -less than or equal to `n` and its components are equal to integer -values. +Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape +can be broadcast with `self.probs` and `self.total_count`. `value` is only legal +if it is less than or equal to `self.total_count` and its components are equal +to integer values. ##### Args: @@ -423,7 +425,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Binomial.logits` {#Binomial.logits} -Log-odds of success. +Log-odds of drawing a `1`. - - - @@ -441,16 +443,10 @@ Mode. Additional documentation from `Binomial`: -Note that when `(n + 1) * p` is an integer, there are actually two -modes. Namely, `(n + 1) * p` and `(n + 1) * p - 1` are both modes. Here -we return only the larger of the two modes. - - -- - - - -#### `tf.contrib.distributions.Binomial.n` {#Binomial.n} - -Number of trials. +Note that when `(1 + total_count) * probs` is an integer, there are +actually two modes. Namely, `(1 + total_count) * probs` and +`(1 + total_count) * probs - 1` are both modes. Here we return only the +larger of the two modes. - - - @@ -460,13 +456,6 @@ Number of trials. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Binomial.p` {#Binomial.p} - -Probability of success. - - - - - #### `tf.contrib.distributions.Binomial.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Binomial.param_shapes} @@ -585,15 +574,15 @@ Probability density/mass function (depending on `is_continuous`). Additional documentation from `Binomial`: -For each batch member of counts `value`, `P[counts]` is the probability that -after sampling `n` draws from this Binomial distribution, the number of -successes is `k`. Note that different sequences of draws can result in the -same counts, thus the probability includes a combinatorial coefficient. +For each batch member of counts `value`, `P[value]` is the probability that +after sampling `self.total_count` draws from this Binomial distribution, the +number of successes is `value`. Since different sequences of draws can result in +the same counts, the probability includes a combinatorial coefficient. -`value` must be a non-negative tensor with dtype `dtype` and whose shape -can be broadcast with `self.p` and `self.n`. `counts` is only legal if it is -less than or equal to `n` and its components are equal to integer -values. +Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape +can be broadcast with `self.probs` and `self.total_count`. `value` is only legal +if it is less than or equal to `self.total_count` and its components are equal +to integer values. ##### Args: @@ -608,6 +597,13 @@ values. values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Binomial.probs` {#Binomial.probs} + +Probability of of drawing a `1`. + + - - - #### `tf.contrib.distributions.Binomial.reparameterization_type` {#Binomial.reparameterization_type} @@ -678,6 +674,13 @@ survival_function(x) = P[X > x] `self.dtype`. +- - - + +#### `tf.contrib.distributions.Binomial.total_count` {#Binomial.total_count} + +Number of trials. + + - - - #### `tf.contrib.distributions.Binomial.validate_args` {#Binomial.validate_args} diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md index f183f90edac..3add2d69e15 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md @@ -1,35 +1,49 @@ Multinomial distribution. -This distribution is parameterized by a vector `p` of probability -parameters for `k` classes and `n`, the counts per each class.. +This Multinomial distribution is parameterized by `probs`, a (batch of) +length-`k` `prob` (probability) vectors (`k > 1`) such that +`tf.reduce_sum(probs, -1) = 1`, and a `total_count` number of trials, i.e., +the number of trials per draw from the Multinomial. It is defined over a +(batch of) length-`k` vector `counts` such that +`tf.reduce_sum(counts, -1) = total_count`. The Multinomial is identically the +Binomial distribution when `k = 2`. -#### Mathematical details +#### Mathematical Details -The Multinomial is a distribution over k-class count data, meaning -for each k-tuple of non-negative integer `counts = [n_1,...,n_k]`, we have a -probability of these draws being made from the distribution. The distribution -has hyperparameters `p = (p_1,...,p_k)`, and probability mass -function (pmf): +The Multinomial is a distribution over `k`-class counts, i.e., a length-`k` +vector of non-negative integer `counts = n = [n_0, ..., n_{k-1}]`. -```pmf(counts) = n! / (n_1!...n_k!) * (p_1)^n_1*(p_2)^n_2*...(p_k)^n_k``` +The probability mass function (pmf) is, -where above `n = sum_j n_j`, `n!` is `n` factorial. +```none +pmf(n; pi, N) = prod_j (pi_j)**n_j / Z +Z = (prod_j n_j!) / N! +``` + +where: +* `probs = pi = [pi_0, ..., pi_{k-1}]`, `pi_j > 0`, `sum_j pi_j = 1`, +* `total_count = N`, `N` a positive integer, +* `Z` is the normalization constant, and, +* `N!` denotes `N` factorial. + +Distribution parameters are automatically broadcast in all functions; see +examples for details. #### Examples Create a 3-class distribution, with the 3rd class is most likely to be drawn, -using logits.. +using logits. ```python logits = [-50., -43, 0] -dist = Multinomial(n=4., logits=logits) +dist = Multinomial(total_count=4., logits=logits) ``` Create a 3-class distribution, with the 3rd class is most likely to be drawn. ```python p = [.2, .3, .5] -dist = Multinomial(n=4., p=p) +dist = Multinomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. @@ -52,54 +66,43 @@ Create a 2-batch of 3-class distributions. ```python p = [[.1, .2, .7], [.3, .3, .4]] # Shape [2, 3] -dist = Multinomial(n=[4., 5], p=p) +dist = Multinomial(total_count=[4., 5], probs=p) counts = [[2., 1, 1], [3, 1, 1]] dist.prob(counts) # Shape [2] ``` - - - -#### `tf.contrib.distributions.Multinomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Multinomial')` {#Multinomial.__init__} +#### `tf.contrib.distributions.Multinomial.__init__(total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name='Multinomial')` {#Multinomial.__init__} Initialize a batch of Multinomial distributions. ##### Args: -* <b>`n`</b>: Non-negative floating point tensor with shape broadcastable to - `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of +* <b>`total_count`</b>: Non-negative floating point tensor with shape broadcastable + to `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of `N1 x ... x Nm` different Multinomial distributions. Its components should be equal to integer values. * <b>`logits`</b>: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm, k], m >= 0`, - and the same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` - different `k` class Multinomial distributions. Only one of `logits` or - `p` should be passed in. -* <b>`p`</b>: Positive floating point tensor with shape broadcastable to - `[N1,..., Nm, k]` `m >= 0` and same dtype as `n`. Defines this as - a batch of `N1 x ... x Nm` different `k` class Multinomial - distributions. `p`'s components in the last portion of its shape should - sum up to 1. Only one of `logits` or `p` should be passed in. -* <b>`validate_args`</b>: `Boolean`, default `False`. Whether to assert valid - values for parameters `n` and `p`, and `x` in `prob` and `log_prob`. - If `False`, correct behavior is not guaranteed. -* <b>`allow_nan_stats`</b>: `Boolean`, default `True`. If `False`, raise an - exception if a statistic (e.g. mean/mode/etc...) is undefined for any - batch member. If `True`, batch members with valid parameters leading to - undefined statistics will return NaN for this statistic. -* <b>`name`</b>: The name to prefix Ops created by this distribution class. - - -* <b>`Examples`</b>: - -```python -# Define 1-batch of 2-class multinomial distribution, -# also known as a Binomial distribution. -dist = Multinomial(n=2., p=[.1, .9]) - -# Define a 2-batch of 3-class distributions. -dist = Multinomial(n=[4., 5], p=[[.1, .3, .6], [.4, .05, .55]]) -``` + and the same dtype as `total_count`. Defines this as a batch of + `N1 x ... x Nm` different `k` class Multinomial distributions. Only one + of `logits` or `probs` should be passed in. +* <b>`probs`</b>: Positive floating point tensor with shape broadcastable to + `[N1,..., Nm, k]` `m >= 0` and same dtype as `total_count`. Defines + this as a batch of `N1 x ... x Nm` different `k` class Multinomial + distributions. `probs`'s components in the last portion of its shape + should sum to `1`. Only one of `logits` or `probs` should be passed in. +* <b>`validate_args`</b>: Python `Boolean`, default `False`. When `True` distribution + parameters are checked for validity despite possibly degrading runtime + performance. When `False` invalid inputs may silently render incorrect + outputs. +* <b>`allow_nan_stats`</b>: Python `Boolean`, default `True`. When `True`, statistics + (e.g., mean, mode, variance) use the value "`NaN`" to indicate the + result is undefined. When `False`, an exception is raised if one or + more of the statistic's batch members are undefined. +* <b>`name`</b>: `String` name prefixed to Ops created by this class. - - - @@ -377,17 +380,18 @@ Log probability density/mass function (depending on `is_continuous`). Additional documentation from `Multinomial`: -For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability -that after sampling `n` draws from this Multinomial distribution, the -number of draws falling in class `j` is `n_j`. Note that different -sequences of draws can result in the same counts, thus the probability -includes a combinatorial coefficient. +For each batch of counts, `value = [n_0, ... +,n_{k-1}]`, `P[value]` is the probability that after sampling `self.total_count` +draws from this Multinomial distribution, the number of draws falling in class +`j` is `n_j`. Since this definition is [exchangeable]( +https://en.wikipedia.org/wiki/Exchangeable_random_variables); different +sequences have the same counts so the probability includes a combinatorial +coefficient. -Note that input "counts" must be a non-negative tensor with dtype `dtype` -and whose shape can be broadcast with `self.p` and `self.n`. For fixed -leading dimensions, the last dimension represents counts for the -corresponding Multinomial distribution in `self.p`. `counts` is only legal -if it sums up to `n` and its components are equal to integer values. +Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no +fractional components, and such that +`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable +with `self.probs` and `self.total_count`. ##### Args: @@ -452,13 +456,6 @@ Mean. Mode. -- - - - -#### `tf.contrib.distributions.Multinomial.n` {#Multinomial.n} - -Number of trials. - - - - - #### `tf.contrib.distributions.Multinomial.name` {#Multinomial.name} @@ -466,15 +463,6 @@ Number of trials. Name prepended to all ops created by this `Distribution`. -- - - - -#### `tf.contrib.distributions.Multinomial.p` {#Multinomial.p} - -Vector of probabilities summing to one. - -Each element is the probability of drawing that coordinate. - - - - - #### `tf.contrib.distributions.Multinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Multinomial.param_shapes} @@ -593,17 +581,18 @@ Probability density/mass function (depending on `is_continuous`). Additional documentation from `Multinomial`: -For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability -that after sampling `n` draws from this Multinomial distribution, the -number of draws falling in class `j` is `n_j`. Note that different -sequences of draws can result in the same counts, thus the probability -includes a combinatorial coefficient. +For each batch of counts, `value = [n_0, ... +,n_{k-1}]`, `P[value]` is the probability that after sampling `self.total_count` +draws from this Multinomial distribution, the number of draws falling in class +`j` is `n_j`. Since this definition is [exchangeable]( +https://en.wikipedia.org/wiki/Exchangeable_random_variables); different +sequences have the same counts so the probability includes a combinatorial +coefficient. -Note that input "counts" must be a non-negative tensor with dtype `dtype` -and whose shape can be broadcast with `self.p` and `self.n`. For fixed -leading dimensions, the last dimension represents counts for the -corresponding Multinomial distribution in `self.p`. `counts` is only legal -if it sums up to `n` and its components are equal to integer values. +Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no +fractional components, and such that +`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable +with `self.probs` and `self.total_count`. ##### Args: @@ -618,6 +607,15 @@ if it sums up to `n` and its components are equal to integer values. values of type `self.dtype`. +- - - + +#### `tf.contrib.distributions.Multinomial.probs` {#Multinomial.probs} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Multinomial.reparameterization_type` {#Multinomial.reparameterization_type} @@ -688,6 +686,13 @@ survival_function(x) = P[X > x] `self.dtype`. +- - - + +#### `tf.contrib.distributions.Multinomial.total_count` {#Multinomial.total_count} + +Number of trials used to construct a sample. + + - - - #### `tf.contrib.distributions.Multinomial.validate_args` {#Multinomial.validate_args} diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.BernoulliWithSigmoidProbs.md similarity index 65% rename from tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md rename to tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.BernoulliWithSigmoidProbs.md index 8f71e904f5e..a742162090c 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.BernoulliWithSigmoidProbs.md @@ -1,14 +1,14 @@ -Bernoulli with `p = sigmoid(p)`. +Bernoulli with `probs = nn.sigmoid(logits)`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP')` {#BernoulliWithSigmoidP.__init__} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.__init__(logits=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidProbs')` {#BernoulliWithSigmoidProbs.__init__} - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.allow_nan_stats` {#BernoulliWithSigmoidP.allow_nan_stats} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.allow_nan_stats` {#BernoulliWithSigmoidProbs.allow_nan_stats} Python boolean describing behavior when a stat is undefined. @@ -29,7 +29,7 @@ undefined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.batch_shape(name='batch_shape')` {#BernoulliWithSigmoidP.batch_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.batch_shape(name='batch_shape')` {#BernoulliWithSigmoidProbs.batch_shape} Shape of a single sample from a single event index as a 1-D `Tensor`. @@ -49,7 +49,7 @@ independent distributions of this kind the instance represents. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.cdf(value, name='cdf')` {#BernoulliWithSigmoidP.cdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.cdf(value, name='cdf')` {#BernoulliWithSigmoidProbs.cdf} Cumulative distribution function. @@ -74,7 +74,7 @@ cdf(x) := P[X <= x] - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.copy(**override_parameters_kwargs)` {#BernoulliWithSigmoidP.copy} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.copy(**override_parameters_kwargs)` {#BernoulliWithSigmoidProbs.copy} Creates a deep copy of the distribution. @@ -97,21 +97,21 @@ intialization arguments. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.dtype` {#BernoulliWithSigmoidP.dtype} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.dtype` {#BernoulliWithSigmoidProbs.dtype} The `DType` of `Tensor`s handled by this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.entropy(name='entropy')` {#BernoulliWithSigmoidP.entropy} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.entropy(name='entropy')` {#BernoulliWithSigmoidProbs.entropy} Shannon entropy in nats. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape')` {#BernoulliWithSigmoidP.event_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.event_shape(name='event_shape')` {#BernoulliWithSigmoidProbs.event_shape} Shape of a single sample from a single batch as a 1-D int32 `Tensor`. @@ -128,7 +128,7 @@ Shape of a single sample from a single batch as a 1-D int32 `Tensor`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.get_batch_shape()` {#BernoulliWithSigmoidP.get_batch_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.get_batch_shape()` {#BernoulliWithSigmoidProbs.get_batch_shape} Shape of a single sample from a single event index as a `TensorShape`. @@ -142,7 +142,7 @@ Same meaning as `batch_shape`. May be only partially defined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.get_event_shape()` {#BernoulliWithSigmoidP.get_event_shape} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.get_event_shape()` {#BernoulliWithSigmoidProbs.get_event_shape} Shape of a single sample from a single batch as a `TensorShape`. @@ -156,14 +156,14 @@ Same meaning as `event_shape`. May be only partially defined. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous` {#BernoulliWithSigmoidP.is_continuous} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_continuous` {#BernoulliWithSigmoidProbs.is_continuous} - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_scalar_batch(name='is_scalar_batch')` {#BernoulliWithSigmoidP.is_scalar_batch} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_scalar_batch(name='is_scalar_batch')` {#BernoulliWithSigmoidProbs.is_scalar_batch} Indicates that `batch_shape == []`. @@ -180,7 +180,7 @@ Indicates that `batch_shape == []`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.is_scalar_event(name='is_scalar_event')` {#BernoulliWithSigmoidP.is_scalar_event} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.is_scalar_event(name='is_scalar_event')` {#BernoulliWithSigmoidProbs.is_scalar_event} Indicates that `event_shape == []`. @@ -197,7 +197,7 @@ Indicates that `event_shape == []`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_cdf(value, name='log_cdf')` {#BernoulliWithSigmoidP.log_cdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_cdf(value, name='log_cdf')` {#BernoulliWithSigmoidProbs.log_cdf} Log cumulative distribution function. @@ -226,7 +226,7 @@ a more accurate answer than simply taking the logarithm of the `cdf` when - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf(value, name='log_pdf')` {#BernoulliWithSigmoidP.log_pdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_pdf(value, name='log_pdf')` {#BernoulliWithSigmoidProbs.log_pdf} Log probability density function. @@ -250,7 +250,7 @@ Log probability density function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf')` {#BernoulliWithSigmoidP.log_pmf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_pmf(value, name='log_pmf')` {#BernoulliWithSigmoidProbs.log_pmf} Log probability mass function. @@ -274,7 +274,7 @@ Log probability mass function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_prob(value, name='log_prob')` {#BernoulliWithSigmoidP.log_prob} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_prob(value, name='log_prob')` {#BernoulliWithSigmoidProbs.log_prob} Log probability density/mass function (depending on `is_continuous`). @@ -293,7 +293,7 @@ Log probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function(value, name='log_survival_function')` {#BernoulliWithSigmoidP.log_survival_function} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.log_survival_function(value, name='log_survival_function')` {#BernoulliWithSigmoidProbs.log_survival_function} Log survival function. @@ -322,46 +322,39 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.logits` {#BernoulliWithSigmoidP.logits} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.logits` {#BernoulliWithSigmoidProbs.logits} -Log-odds of success. +Log-odds of a `1` outcome (vs `0`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.mean(name='mean')` {#BernoulliWithSigmoidP.mean} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.mean(name='mean')` {#BernoulliWithSigmoidProbs.mean} Mean. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.mode(name='mode')` {#BernoulliWithSigmoidP.mode} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.mode(name='mode')` {#BernoulliWithSigmoidProbs.mode} Mode. Additional documentation from `Bernoulli`: -Returns `1` if `p > 1-p` and `0` otherwise. +Returns `1` if `prob > 0.5` and `0` otherwise. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.name` {#BernoulliWithSigmoidP.name} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.name` {#BernoulliWithSigmoidProbs.name} Name prepended to all ops created by this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.p` {#BernoulliWithSigmoidP.p} - -Probability of success. - - -- - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#BernoulliWithSigmoidP.param_shapes} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#BernoulliWithSigmoidProbs.param_shapes} Shapes of parameters given the desired shape of a call to `sample()`. @@ -385,7 +378,7 @@ Subclasses should override class method `_param_shapes`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.param_static_shapes(cls, sample_shape)` {#BernoulliWithSigmoidP.param_static_shapes} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.param_static_shapes(cls, sample_shape)` {#BernoulliWithSigmoidProbs.param_static_shapes} param_shapes with static (i.e. `TensorShape`) shapes. @@ -415,14 +408,14 @@ constant-valued tensors when constant values are fed. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.parameters` {#BernoulliWithSigmoidP.parameters} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.parameters` {#BernoulliWithSigmoidProbs.parameters} Dictionary of parameters used to instantiate this `Distribution`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.pdf(value, name='pdf')` {#BernoulliWithSigmoidP.pdf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.pdf(value, name='pdf')` {#BernoulliWithSigmoidProbs.pdf} Probability density function. @@ -446,7 +439,7 @@ Probability density function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.pmf(value, name='pmf')` {#BernoulliWithSigmoidP.pmf} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.pmf(value, name='pmf')` {#BernoulliWithSigmoidProbs.pmf} Probability mass function. @@ -470,7 +463,7 @@ Probability mass function. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.prob(value, name='prob')` {#BernoulliWithSigmoidP.prob} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.prob(value, name='prob')` {#BernoulliWithSigmoidProbs.prob} Probability density/mass function (depending on `is_continuous`). @@ -489,14 +482,14 @@ Probability density/mass function (depending on `is_continuous`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.q` {#BernoulliWithSigmoidP.q} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.probs` {#BernoulliWithSigmoidProbs.probs} -1-p. +Probability of a `1` outcome (vs `0`). - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.reparameterization_type` {#BernoulliWithSigmoidP.reparameterization_type} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.reparameterization_type` {#BernoulliWithSigmoidProbs.reparameterization_type} Describes how samples from the distribution are reparameterized. @@ -511,7 +504,7 @@ or `distributions.NOT_REPARAMETERIZED`. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.sample(sample_shape=(), seed=None, name='sample')` {#BernoulliWithSigmoidP.sample} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.sample(sample_shape=(), seed=None, name='sample')` {#BernoulliWithSigmoidProbs.sample} Generate samples of the specified shape. @@ -533,14 +526,14 @@ sample. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.stddev(name='stddev')` {#BernoulliWithSigmoidP.stddev} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.stddev(name='stddev')` {#BernoulliWithSigmoidProbs.stddev} Standard deviation. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.survival_function(value, name='survival_function')` {#BernoulliWithSigmoidP.survival_function} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.survival_function(value, name='survival_function')` {#BernoulliWithSigmoidProbs.survival_function} Survival function. @@ -566,14 +559,14 @@ survival_function(x) = P[X > x] - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.validate_args` {#BernoulliWithSigmoidP.validate_args} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.validate_args` {#BernoulliWithSigmoidProbs.validate_args} Python boolean indicated possibly expensive checks are enabled. - - - -#### `tf.contrib.distributions.BernoulliWithSigmoidP.variance(name='variance')` {#BernoulliWithSigmoidP.variance} +#### `tf.contrib.distributions.BernoulliWithSigmoidProbs.variance(name='variance')` {#BernoulliWithSigmoidProbs.variance} Variance. diff --git a/tensorflow/g3doc/api_docs/python/index.md b/tensorflow/g3doc/api_docs/python/index.md index 5fb70c89ba5..22b1dcd6136 100644 --- a/tensorflow/g3doc/api_docs/python/index.md +++ b/tensorflow/g3doc/api_docs/python/index.md @@ -738,7 +738,7 @@ * **[Statistical Distributions (contrib)](../../api_docs/python/contrib.distributions.md)**: * [`Bernoulli`](../../api_docs/python/contrib.distributions.md#Bernoulli) - * [`BernoulliWithSigmoidP`](../../api_docs/python/contrib.distributions.md#BernoulliWithSigmoidP) + * [`BernoulliWithSigmoidProbs`](../../api_docs/python/contrib.distributions.md#BernoulliWithSigmoidProbs) * [`Beta`](../../api_docs/python/contrib.distributions.md#Beta) * [`BetaWithSoftplusAB`](../../api_docs/python/contrib.distributions.md#BetaWithSoftplusAB) * [`Binomial`](../../api_docs/python/contrib.distributions.md#Binomial)