Adding a binary classification example
PiperOrigin-RevId: 171577979
This commit is contained in:
parent
11c123b43b
commit
0ac688a18c
tensorflow/contrib/boosted_trees
11
tensorflow/contrib/boosted_trees/README.md
Normal file
11
tensorflow/contrib/boosted_trees/README.md
Normal file
@ -0,0 +1,11 @@
|
||||
# TF Boosted Trees (TFBT)
|
||||
|
||||
TF Boosted trees is an implementation of a gradient boosting algorithm with
|
||||
trees used as week learners.
|
||||
|
||||
## Examples
|
||||
Folder "examples" demonstrates how TFBT estimators can be used for various
|
||||
problems. Namely, it contains:
|
||||
* binary_mnist.py - an example on how to use TFBT for binary classification.
|
||||
* mnist.py - a multiclass example.
|
||||
* boston.py - a regression example.
|
169
tensorflow/contrib/boosted_trees/examples/binary_mnist.py
Normal file
169
tensorflow/contrib/boosted_trees/examples/binary_mnist.py
Normal file
@ -0,0 +1,169 @@
|
||||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
r"""Demonstrates multiclass MNIST TF Boosted trees example.
|
||||
|
||||
This example demonstrates how to run experiments with TF Boosted Trees on
|
||||
a binary dataset. We use digits 4 and 9 from the original MNIST dataset.
|
||||
|
||||
Example Usage:
|
||||
python tensorflow/contrib/boosted_trees/examples/binary_mnist.py \
|
||||
--output_dir="/tmp/binary_mnist" --depth=4 --learning_rate=0.3 \
|
||||
--batch_size=10761 --examples_per_layer=10761 --eval_batch_size=1030 \
|
||||
--num_eval_steps=1 --num_trees=10 --l2=1 --vmodule=training_ops=1 \
|
||||
|
||||
When training is done, accuracy on eval data is reported. Point tensorboard
|
||||
to the directory for the run to see how the training progresses:
|
||||
|
||||
tensorboard --logdir=/tmp/binary_mnist
|
||||
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib.boosted_trees.estimator_batch.estimator import GradientBoostedDecisionTreeClassifier
|
||||
from tensorflow.contrib.boosted_trees.proto import learner_pb2
|
||||
from tensorflow.contrib.learn import learn_runner
|
||||
|
||||
|
||||
def get_input_fn(data,
|
||||
batch_size,
|
||||
capacity=10000,
|
||||
min_after_dequeue=3000):
|
||||
"""Input function over MNIST data."""
|
||||
# Keep only 4 and 9 digits.
|
||||
ids = np.where((data.labels == 4) | (data.labels == 9))
|
||||
images = data.images[ids]
|
||||
labels = data.labels[ids]
|
||||
# Make digit 4 label 0, 9 is 1.
|
||||
labels = labels == 4
|
||||
|
||||
def _input_fn():
|
||||
"""Prepare features and labels."""
|
||||
images_batch, labels_batch = tf.train.shuffle_batch(
|
||||
tensors=[images,
|
||||
labels.astype(np.int32)],
|
||||
batch_size=batch_size,
|
||||
capacity=capacity,
|
||||
min_after_dequeue=min_after_dequeue,
|
||||
enqueue_many=True,
|
||||
num_threads=4)
|
||||
features_map = {"images": images_batch}
|
||||
return features_map, labels_batch
|
||||
|
||||
return _input_fn
|
||||
|
||||
|
||||
# Main config - creates a TF Boosted Trees Estimator based on flags.
|
||||
def _get_tfbt(output_dir):
|
||||
"""Configures TF Boosted Trees estimator based on flags."""
|
||||
learner_config = learner_pb2.LearnerConfig()
|
||||
|
||||
learner_config.learning_rate_tuner.fixed.learning_rate = FLAGS.learning_rate
|
||||
learner_config.regularization.l1 = 0.0
|
||||
learner_config.regularization.l2 = FLAGS.l2 / FLAGS.examples_per_layer
|
||||
learner_config.constraints.max_tree_depth = FLAGS.depth
|
||||
|
||||
growing_mode = learner_pb2.LearnerConfig.LAYER_BY_LAYER
|
||||
learner_config.growing_mode = growing_mode
|
||||
run_config = tf.contrib.learn.RunConfig(save_checkpoints_secs=300)
|
||||
|
||||
# Create a TF Boosted trees estimator that can take in custom loss.
|
||||
estimator = GradientBoostedDecisionTreeClassifier(
|
||||
learner_config=learner_config,
|
||||
examples_per_layer=FLAGS.examples_per_layer,
|
||||
model_dir=output_dir,
|
||||
num_trees=FLAGS.num_trees,
|
||||
center_bias=False,
|
||||
config=run_config)
|
||||
return estimator
|
||||
|
||||
|
||||
def _make_experiment_fn(output_dir):
|
||||
"""Creates experiment for gradient boosted decision trees."""
|
||||
data = tf.contrib.learn.datasets.mnist.load_mnist()
|
||||
train_input_fn = get_input_fn(data.train, FLAGS.batch_size)
|
||||
eval_input_fn = get_input_fn(data.validation, FLAGS.eval_batch_size)
|
||||
|
||||
return tf.contrib.learn.Experiment(
|
||||
estimator=_get_tfbt(output_dir),
|
||||
train_input_fn=train_input_fn,
|
||||
eval_input_fn=eval_input_fn,
|
||||
train_steps=None,
|
||||
eval_steps=FLAGS.num_eval_steps,
|
||||
eval_metrics=None)
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
learn_runner.run(
|
||||
experiment_fn=_make_experiment_fn,
|
||||
output_dir=FLAGS.output_dir,
|
||||
schedule="train_and_evaluate")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
parser = argparse.ArgumentParser()
|
||||
# Define the list of flags that users can change.
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Choose the dir for the output.")
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The batch size for reading data.")
|
||||
parser.add_argument(
|
||||
"--eval_batch_size",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Size of the batch for eval.")
|
||||
parser.add_argument(
|
||||
"--num_eval_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of steps to run evaluation for.")
|
||||
# Flags for gradient boosted trees config.
|
||||
parser.add_argument(
|
||||
"--depth", type=int, default=4, help="Maximum depth of weak learners.")
|
||||
parser.add_argument(
|
||||
"--l2", type=float, default=1.0, help="l2 regularization per batch.")
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="Learning rate (shrinkage weight) with which each new tree is added."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--examples_per_layer",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of examples to accumulate stats for per layer.")
|
||||
parser.add_argument(
|
||||
"--num_trees",
|
||||
type=int,
|
||||
default=None,
|
||||
required=True,
|
||||
help="Number of trees to grow before stopping.")
|
||||
|
||||
FLAGS, unparsed = parser.parse_known_args()
|
||||
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|
@ -44,8 +44,6 @@ from tensorflow.contrib.boosted_trees.proto import learner_pb2
|
||||
from tensorflow.contrib.layers.python.layers import feature_column
|
||||
from tensorflow.contrib.learn import learn_runner
|
||||
|
||||
_TEST_SPLIT_RATIO = 0.2
|
||||
_TEST_SPLIT_SEED = 42
|
||||
_BOSTON_NUM_FEATURES = 13
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user