Add homepage for TFLite Model Maker under "guide"
PiperOrigin-RevId: 325368667 Change-Id: I3f4d1162684564373a9abbda59c520928448a0cf
This commit is contained in:
parent
d547659011
commit
0a764ff2fe
@ -93,6 +93,11 @@ upper_tabs:
|
||||
- title: "1.x compatibility"
|
||||
path: /lite/convert/1x_compatibility
|
||||
|
||||
- heading: "Create a model"
|
||||
- title: "TensorFlow Lite Model Maker"
|
||||
status: experimental
|
||||
path: /lite/guide/model_maker
|
||||
|
||||
- heading: "Inference"
|
||||
- title: "Overview"
|
||||
path: /lite/guide/inference
|
||||
|
@ -67,6 +67,10 @@ If you have designed and trained your own TensorFlow model, or you have trained
|
||||
a model obtained from another source, you must
|
||||
[convert it to the TensorFlow Lite format](#2_convert_the_model_format).
|
||||
|
||||
You can also try [The TensorFlow Lite Model Maker library](model_maker.md) which
|
||||
simplifies the process of training a TensorFlow Lite model using custom
|
||||
datasets.
|
||||
|
||||
## 2. Convert the model
|
||||
|
||||
<a id="2_convert_the_model_format"></a>
|
||||
|
60
tensorflow/lite/g3doc/guide/model_maker.md
Normal file
60
tensorflow/lite/g3doc/guide/model_maker.md
Normal file
@ -0,0 +1,60 @@
|
||||
# TensorFlow Lite Model Maker
|
||||
|
||||
## Overview
|
||||
|
||||
The TensorFlow Lite Model Maker library simplifies the process of training a
|
||||
TensorFlow Lite model using custom dataset. It uses transfer learning to reduce
|
||||
the amount of training data required and shorten the training time.
|
||||
|
||||
## Supported Tasks
|
||||
|
||||
The Model Maker library currently supports the following ML tasks. Click the
|
||||
links below for guides on how to train the model.
|
||||
|
||||
Supported Tasks | Task Utility
|
||||
-------------------------------------------------------------------------------------------------------- | ------------
|
||||
Image Classification [guide](https://www.tensorflow.org/lite/tutorials/model_maker_image_classification) | Classify images into predefined categories.
|
||||
Text Classification [guide](https://www.tensorflow.org/lite/tutorials/model_maker_text_classification) | Classify text into predefined categories.
|
||||
Question Answer [guide](https://www.tensorflow.org/lite/tutorials/model_maker_question_answer) | Find the answer in a certain context for a given question.
|
||||
|
||||
## End-to-End Example
|
||||
|
||||
Model Maker allows you to train a TensorFlow Lite model using custom datasets in
|
||||
just a few lines of code. For example, here are the steps to train an image
|
||||
classification model.
|
||||
|
||||
```python
|
||||
# Load input data specific to an on-device ML app.
|
||||
data = ImageClassifierDataLoader.from_folder('flower_photos/')
|
||||
train_data, test_data = data.split(0.9)
|
||||
|
||||
# Customize the TensorFlow model.
|
||||
model = image_classifier.create(data)
|
||||
|
||||
# Evaluate the model.
|
||||
loss, accuracy = model.evaluate(test_data)
|
||||
|
||||
# Export to Tensorflow Lite model and label file in `export_dir`.
|
||||
model.export(export_dir='/tmp/')
|
||||
```
|
||||
|
||||
For more details, see the
|
||||
[image classification guide](https://www.tensorflow.org/lite/tutorials/model_maker_image_classification).
|
||||
|
||||
## Installation
|
||||
|
||||
There are two ways to install Model Maker.
|
||||
|
||||
* Install a prebuilt pip package
|
||||
|
||||
```shell
|
||||
pip install tflite-model-maker
|
||||
```
|
||||
|
||||
* Clone the source code from GitHub and install.
|
||||
|
||||
```shell
|
||||
git clone https://github.com/tensorflow/examples
|
||||
cd examples
|
||||
pip install .[model_maker]
|
||||
```
|
Loading…
x
Reference in New Issue
Block a user