Use persistent buffer in conv and xtensa_hifimini/conv.
PiperOrigin-RevId: 309825806 Change-Id: Ia5266ae0b0902ee3dc64f96955a76838ad96d45a
This commit is contained in:
parent
411ddcf013
commit
0a5a4f0d83
@ -53,7 +53,7 @@ TF_LITE_MICRO_TEST(TestImageRecognitionInvoke) {
|
||||
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
|
||||
tflite::ops::micro::Register_SOFTMAX());
|
||||
|
||||
const int tensor_arena_size = 45 * 1024;
|
||||
const int tensor_arena_size = 50 * 1024;
|
||||
uint8_t tensor_arena[tensor_arena_size];
|
||||
|
||||
tflite::MicroInterpreter interpreter(model, micro_op_resolver, tensor_arena,
|
||||
|
@ -67,7 +67,7 @@ int main(int argc, char** argv) {
|
||||
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
|
||||
tflite::ops::micro::Register_SOFTMAX());
|
||||
|
||||
constexpr int tensor_arena_size = 45 * 1024;
|
||||
constexpr int tensor_arena_size = 50 * 1024;
|
||||
uint8_t tensor_arena[tensor_arena_size];
|
||||
tflite::MicroInterpreter interpreter(model, resolver, tensor_arena,
|
||||
tensor_arena_size, error_reporter);
|
||||
|
@ -34,7 +34,7 @@ tflite::MicroInterpreter* interpreter = nullptr;
|
||||
TfLiteTensor* input = nullptr;
|
||||
|
||||
// An area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int kTensorArenaSize = 73 * 1024;
|
||||
constexpr int kTensorArenaSize = 93 * 1024;
|
||||
static uint8_t tensor_arena[kTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
|
@ -27,7 +27,7 @@ limitations under the License.
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
// Create an area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int tensor_arena_size = 73 * 1024;
|
||||
constexpr int tensor_arena_size = 93 * 1024;
|
||||
uint8_t tensor_arena[tensor_arena_size];
|
||||
|
||||
TF_LITE_MICRO_TESTS_BEGIN
|
||||
|
@ -41,7 +41,7 @@ TfLiteTensor* input = nullptr;
|
||||
// signed value.
|
||||
|
||||
// An area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int kTensorArenaSize = 125 * 1024;
|
||||
constexpr int kTensorArenaSize = 136 * 1024;
|
||||
static uint8_t tensor_arena[kTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
|
@ -27,7 +27,7 @@ limitations under the License.
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
// Create an area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int tensor_arena_size = 125 * 1024;
|
||||
constexpr int tensor_arena_size = 136 * 1024;
|
||||
uint8_t tensor_arena[tensor_arena_size];
|
||||
|
||||
TF_LITE_MICRO_TESTS_BEGIN
|
||||
|
@ -33,7 +33,6 @@ constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
constexpr int kMaxChannels = 1024;
|
||||
|
||||
// Conv is quantized along dimension 0:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
@ -49,9 +48,8 @@ struct OpData {
|
||||
int output_shift;
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
// TODO(b/141139247): Allocate these dynamically when possible.
|
||||
int32_t per_channel_output_multiplier[kMaxChannels];
|
||||
int32_t per_channel_output_shift[kMaxChannels];
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
@ -72,10 +70,10 @@ inline PaddingType RuntimePaddingType(TfLitePadding padding) {
|
||||
}
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, int width, int height,
|
||||
int filter_width, int filter_height, int out_width,
|
||||
int out_height, const TfLiteType data_type,
|
||||
OpData* data) {
|
||||
const TfLiteConvParams* params, int width,
|
||||
int height, int filter_width, int filter_height,
|
||||
int out_width, int out_height,
|
||||
const TfLiteType data_type, OpData* data) {
|
||||
bool has_bias = node->inputs->size == 3;
|
||||
// Check number of inputs/outputs
|
||||
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||
@ -109,8 +107,69 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
void* data = nullptr;
|
||||
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
|
||||
kTfLiteError) {
|
||||
return nullptr;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
|
||||
int input_width = input->dims->data[2];
|
||||
int input_height = input->dims->data[1];
|
||||
int filter_width = filter->dims->data[2];
|
||||
int filter_height = filter->dims->data[1];
|
||||
int output_width = output->dims->data[2];
|
||||
int output_height = output->dims->data[1];
|
||||
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
const int num_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&data->per_channel_output_multiplier)));
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&data->per_channel_output_shift)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
return CalculateOpData(context, node, params, input_width, input_height,
|
||||
filter_width, filter_height, output_width,
|
||||
output_height, input->type, data);
|
||||
} // namespace conv
|
||||
|
||||
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, OpData* data,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteTensor* input, const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* im2col,
|
||||
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
|
||||
@ -118,10 +177,11 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
const int32_t filter_offset = -filter->params.zero_point;
|
||||
const int32_t output_offset = output->params.zero_point;
|
||||
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.padding_type = RuntimePaddingType(params->padding);
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
@ -129,10 +189,10 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
op_params.input_offset = input_offset;
|
||||
op_params.weights_offset = filter_offset;
|
||||
op_params.output_offset = output_offset;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = -data->output_shift;
|
||||
op_params.quantized_activation_min = data->output_activation_min;
|
||||
op_params.quantized_activation_max = data->output_activation_max;
|
||||
op_params.output_multiplier = data.output_multiplier;
|
||||
op_params.output_shift = -data.output_shift;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
reference_ops::Conv(op_params, GetTensorShape(input),
|
||||
GetTensorData<uint8_t>(input), GetTensorShape(filter),
|
||||
GetTensorData<uint8_t>(filter), GetTensorShape(bias),
|
||||
@ -142,11 +202,12 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, OpData* data,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteTensor* input,
|
||||
const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output,
|
||||
TfLiteTensor* im2col) {
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.input_offset = -input->params.zero_point;
|
||||
op_params.output_offset = output->params.zero_point;
|
||||
@ -154,14 +215,14 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.quantized_activation_min = data->output_activation_min;
|
||||
op_params.quantized_activation_max = data->output_activation_max;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
|
||||
reference_integer_ops::ConvPerChannel(
|
||||
op_params, data->per_channel_output_multiplier,
|
||||
data->per_channel_output_shift, GetTensorShape(input),
|
||||
op_params, data.per_channel_output_multiplier,
|
||||
data.per_channel_output_shift, GetTensorShape(input),
|
||||
GetTensorData<int8>(input), GetTensorShape(filter),
|
||||
GetTensorData<int8>(filter), GetTensorShape(bias),
|
||||
GetTensorData<int32>(bias), GetTensorShape(output),
|
||||
@ -169,18 +230,18 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, OpData* data,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteTensor* input, const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* im2col,
|
||||
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(params->activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.padding_type = RuntimePaddingType(params->padding);
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
@ -204,50 +265,20 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
|
||||
int input_width = input->dims->data[2];
|
||||
int input_height = input->dims->data[1];
|
||||
int filter_width = filter->dims->data[2];
|
||||
int filter_height = filter->dims->data[1];
|
||||
int output_width = output->dims->data[2];
|
||||
int output_height = output->dims->data[1];
|
||||
|
||||
OpData data;
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||
filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, &data));
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
switch (input->type) { // Already know in/out types are same.
|
||||
case kTfLiteFloat32:
|
||||
EvalFloat(context, node, params, &data, input, filter, bias, nullptr,
|
||||
EvalFloat(context, node, params, data, input, filter, bias, nullptr,
|
||||
nullptr, output);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
EvalQuantizedPerChannel(context, node, params, &data, input, filter, bias,
|
||||
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
|
||||
output, nullptr);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
EvalQuantized(context, node, params, &data, input, filter, bias, nullptr,
|
||||
EvalQuantized(context, node, params, data, input, filter, bias, nullptr,
|
||||
nullptr, output);
|
||||
break;
|
||||
default:
|
||||
@ -261,9 +292,9 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
} // namespace conv
|
||||
|
||||
TfLiteRegistration* Register_CONV_2D() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr,
|
||||
static TfLiteRegistration r = {/*init=*/conv::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*prepare=*/conv::Prepare,
|
||||
/*invoke=*/conv::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
|
@ -185,9 +185,6 @@ inline void Conv1x32Input32x32Filter(
|
||||
ae_q56s acc_56 = AE_ZEROQ56();
|
||||
const int8_t* input_vals_ptr = input_data - 2;
|
||||
for (int i = 0; i < kFilterDepth; i += 2) {
|
||||
// Find current input index, minus 2 for Xtensa load
|
||||
// alignments:
|
||||
|
||||
// Load signed 2x 8bit values and right shift into 24bit
|
||||
// alignment:
|
||||
ae_p24x2s input_vals_24x2;
|
||||
@ -244,7 +241,6 @@ constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
constexpr int kMaxChannels = 32;
|
||||
|
||||
// Conv is quantized along dimension 0:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
@ -258,9 +254,8 @@ struct OpData {
|
||||
int output_shift;
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
// TODO(b/141139247): Allocate these dynamically when possible.
|
||||
int32_t per_channel_output_multiplier[kMaxChannels];
|
||||
int32_t per_channel_output_shift[kMaxChannels];
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
@ -268,12 +263,6 @@ struct OpData {
|
||||
int32_t output_activation_max;
|
||||
};
|
||||
|
||||
// These constants represent constants specific to the music detect model.
|
||||
// They exist until (b/132070898) is fixed.
|
||||
static const int kMaxOpDataSize = 6;
|
||||
static int op_data_counter = 0;
|
||||
static OpData kStaticOpData[kMaxOpDataSize];
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, int width, int height,
|
||||
int filter_width, int filter_height, int out_width,
|
||||
@ -301,30 +290,37 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
int output_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
|
||||
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
||||
return tflite::PopulateConvolutionQuantizationParams(
|
||||
context, input, filter, bias, output, params->activation,
|
||||
&data->output_multiplier, &data->output_shift,
|
||||
&data->output_activation_min, &data->output_activation_max,
|
||||
data->per_channel_output_multiplier,
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift),
|
||||
output_channels));
|
||||
output_channels);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; }
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
void* data = nullptr;
|
||||
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
|
||||
kTfLiteError) {
|
||||
return nullptr;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
|
||||
// TODO(b/132070898): Use statically slotted OpData structures until a
|
||||
// scratch memory API is ready.
|
||||
OpData* op_data = &kStaticOpData[op_data_counter++];
|
||||
node->user_data = op_data;
|
||||
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
int input_width = input->dims->data[2];
|
||||
int input_height = input->dims->data[1];
|
||||
@ -333,6 +329,17 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
int output_width = output->dims->data[2];
|
||||
int output_height = output->dims->data[1];
|
||||
|
||||
// Per channel quantization is only needed for int8 inference. For other
|
||||
// quantized types, only a single scale and zero point is needed.
|
||||
const int num_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&op_data->per_channel_output_multiplier)));
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&op_data->per_channel_output_shift)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
@ -353,11 +360,9 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, op_data));
|
||||
|
||||
return kTfLiteOk;
|
||||
return CalculateOpData(context, node, params, input_width, input_height,
|
||||
filter_width, filter_height, output_width,
|
||||
output_height, input->type, op_data);
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
@ -366,6 +371,7 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output,
|
||||
TfLiteTensor* im2col) {
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.input_offset = -input->params.zero_point;
|
||||
op_params.output_offset = output->params.zero_point;
|
||||
@ -388,6 +394,8 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
||||
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
@ -429,8 +437,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
} // namespace conv
|
||||
|
||||
TfLiteRegistration* Register_CONV_2D() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr,
|
||||
/*free=*/conv::Free,
|
||||
static TfLiteRegistration r = {/*init=*/conv::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/conv::Prepare,
|
||||
/*invoke=*/conv::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
|
Loading…
Reference in New Issue
Block a user