Fix all 64/32 bit warning in core/common_runtime.

Change: 152141388
This commit is contained in:
Suharsh Sivakumar 2017-04-04 08:36:03 -08:00 committed by TensorFlower Gardener
parent 9c4124ce92
commit 0873aa5725
12 changed files with 42 additions and 40 deletions

View File

@ -453,8 +453,8 @@ void BFCAllocator::RemoveFreeChunkIterFromBin(
void BFCAllocator::RemoveFreeChunkFromBin(BFCAllocator::ChunkHandle h) {
Chunk* c = ChunkFromHandle(h);
CHECK(!c->in_use() && (c->bin_num != kInvalidBinNum));
int count = BinFromIndex(c->bin_num)->free_chunks.erase(h);
CHECK(count > 0) << "Could not find chunk in bin";
CHECK_GT(BinFromIndex(c->bin_num)->free_chunks.erase(h), 0)
<< "Could not find chunk in bin";
c->bin_num = kInvalidBinNum;
}

View File

@ -78,7 +78,7 @@ class BFCAllocator : public VisitableAllocator {
// A ChunkHandle is an index into the chunks_ vector in BFCAllocator
// kInvalidChunkHandle means an invalid chunk
typedef int ChunkHandle;
typedef size_t ChunkHandle;
static const int kInvalidChunkHandle = -1;
typedef int BinNum;

View File

@ -44,7 +44,7 @@ DeviceMgr::~DeviceMgr() {
}
StringPiece DeviceMgr::CopyToBackingStore(StringPiece s) {
int n = s.size();
size_t n = s.size();
char* space = name_backing_store_.Alloc(n);
memcpy(space, s.data(), n);
return StringPiece(space, n);

View File

@ -427,7 +427,7 @@ Status DirectSession::Run(const RunOptions& run_options,
TF_RETURN_IF_ERROR(SendInputs(inputs, executors_and_keys, run_state.rendez));
// Start parallel Executors.
const int num_executors = executors_and_keys->items.size();
const size_t num_executors = executors_and_keys->items.size();
ExecutorBarrier* barrier = new ExecutorBarrier(
num_executors, run_state.rendez, [&run_state](const Status& ret) {
{
@ -458,7 +458,7 @@ Status DirectSession::Run(const RunOptions& run_options,
options_.config.graph_options().build_cost_model();
const int64 build_cost_model_after =
options_.config.graph_options().build_cost_model_after();
int measure_step_count = executor_step_count - build_cost_model_after;
int64 measure_step_count = executor_step_count - build_cost_model_after;
if (measure_step_count >= 0) {
update_cost_model =
((measure_step_count + 1) % build_cost_model_every == 0);
@ -611,7 +611,7 @@ Status DirectSession::PRunSetup(const std::vector<string>& input_names,
}
// Start parallel Executors.
const int num_executors = executors_and_keys->items.size();
const size_t num_executors = executors_and_keys->items.size();
ExecutorBarrier* barrier = new ExecutorBarrier(
num_executors, run_state->rendez, [run_state](const Status& ret) {
if (!ret.ok()) {

View File

@ -232,7 +232,7 @@ struct NodeItem {
int input_start = 0;
// Number of output edges.
int num_output_edges;
size_t num_output_edges;
PendingCounts::Handle pending_id;
@ -307,7 +307,7 @@ class GraphView {
void Initialize(const Graph* g);
Status SetAllocAttrs(const Graph* g, const Device* device);
NodeItem* node(int id) const {
NodeItem* node(size_t id) const {
DCHECK_GE(id, 0);
DCHECK_LT(id, num_nodes_);
uint32 offset = node_offsets_[id];
@ -454,7 +454,7 @@ GraphView::~GraphView() {
}
size_t GraphView::NodeItemBytes(const Node* n) {
const int num_output_edges = n->out_edges().size();
const size_t num_output_edges = n->out_edges().size();
const int num_inputs = n->num_inputs();
const int num_outputs = n->num_outputs();
@ -500,11 +500,11 @@ char* GraphView::InitializeNode(char* ptr, const Node* n) {
// pointers). Casting to int64 is needed on 32bit CPU to avoid comparing
// values as "int" vs "size_t" in CHECK_LE.
CHECK_LE(static_cast<int64>(ptr - space_), kuint32max);
const uint32 offset = ptr - space_;
const uint32 offset = static_cast<uint32>(ptr - space_);
node_offsets_[id] = offset;
ptr += bytes;
const int num_output_edges = n->out_edges().size();
const size_t num_output_edges = n->out_edges().size();
const int num_inputs = n->num_inputs();
const int num_outputs = n->num_outputs();
@ -580,9 +580,10 @@ void GraphView::Initialize(const Graph* g) {
CHECK_EQ(ptr, space_ + total_bytes);
}
void GetMaxPendingCounts(const Node* n, int* max_pending, int* max_dead_count) {
const int num_in_edges = n->in_edges().size();
int initial_count;
void GetMaxPendingCounts(const Node* n, size_t* max_pending,
size_t* max_dead_count) {
const size_t num_in_edges = n->in_edges().size();
size_t initial_count;
if (IsMerge(n)) {
// merge waits all control inputs so we initialize the pending
// count to be the number of control edges.
@ -626,8 +627,7 @@ Status ExecutorImpl::Initialize() {
FrameInfo* frame_info = EnsureFrameInfo(frame_name);
// See if this node is a root node, and if so, add to root_nodes_.
const int num_in_edges = n->in_edges().size();
if (num_in_edges == 0) {
if (n->in_edges().empty()) {
root_nodes_.push_back(n);
}
@ -659,7 +659,7 @@ Status ExecutorImpl::Initialize() {
// pending counts data structure, and allocate a handle in
// that frame's pending counts data structure that has enough
// space to store these maximal count values.
int max_pending, max_dead;
size_t max_pending, max_dead;
GetMaxPendingCounts(n, &max_pending, &max_dead);
item->pending_id =
frame_info->pending_counts_layout.CreateHandle(max_pending, max_dead);
@ -896,7 +896,7 @@ class ExecutorState {
Entry* input_tensors;
// The number of outstanding ops for each iteration.
int outstanding_ops;
size_t outstanding_ops;
// The number of outstanding frames for each iteration.
int outstanding_frame_count;
@ -1037,13 +1037,13 @@ class ExecutorState {
inline IterationState* GetIteration(int64 iter)
EXCLUSIVE_LOCKS_REQUIRED(mu) {
int index = iter % iterations.size();
size_t index = iter % iterations.size();
return iterations[index];
}
inline void SetIteration(int64 iter, IterationState* state)
EXCLUSIVE_LOCKS_REQUIRED(mu) {
int index = iter % iterations.size();
size_t index = iter % iterations.size();
DCHECK(state == nullptr || iterations[index] == nullptr);
iterations[index] = state;
}
@ -1404,7 +1404,7 @@ void ExecutorImpl::InitializePending(const Graph* graph,
for (const Node* n : graph->nodes()) {
const int id = n->id();
const string& name = cf_info.frame_names[id];
int max_pending, max_dead;
size_t max_pending, max_dead;
GetMaxPendingCounts(n, &max_pending, &max_dead);
const NodeItem* item = gview_.node(id);
PendingCounts* counts = EnsureFrameInfo(name)->pending_counts;
@ -2027,7 +2027,7 @@ bool ExecutorState::NodeDone(const Status& s, const Node* node,
}
bool completed = false;
int ready_size = ready.size();
size_t ready_size = ready.size();
if (ready_size == 0 || !s.ok()) {
completed = (num_outstanding_ops_.fetch_sub(1) == 1);
} else if (ready_size > 1) {
@ -2375,10 +2375,10 @@ void ExecutorState::FrameState::ActivateNodes(const NodeItem* item,
TaggedNodeSeq* ready) {
const GraphView& gview = executor->gview_;
IterationState* iter_state = GetIteration(iter);
const int num_output_edges = item->num_output_edges;
const size_t num_output_edges = item->num_output_edges;
const EdgeInfo* edges = item->output_edge_list();
Entry* input_tensors = iter_state->input_tensors;
for (int out_index = 0; out_index < num_output_edges; out_index++) {
for (size_t out_index = 0; out_index < num_output_edges; out_index++) {
const EdgeInfo& e = edges[out_index];
const int dst_id = e.dst_id;
const NodeItem* dst_item = gview.node(dst_id);

View File

@ -162,7 +162,7 @@ class ExecutorBarrier {
//
// 'done' is called after the last executor completes, and
// ExecutorBarrier is deleted.
ExecutorBarrier(int num, Rendezvous* r, StatusCallback done)
ExecutorBarrier(size_t num, Rendezvous* r, StatusCallback done)
: rendez_(r), done_cb_(done), pending_(num) {}
~ExecutorBarrier() {}

View File

@ -274,8 +274,9 @@ class CallOp : public AsyncOpKernel {
if (!status.ok()) {
ctx->SetStatus(status);
} else {
CHECK_EQ(rets->size(), ctx->num_outputs());
for (size_t i = 0; i < rets->size(); ++i) {
const int ret_size = static_cast<int>(rets->size());
CHECK_EQ(ret_size, ctx->num_outputs());
for (int i = 0; i < ret_size; ++i) {
ctx->set_output(i, (*rets)[i]);
}
}
@ -1000,7 +1001,7 @@ string NewName(const Node* n, bool pretty) {
void ToGraphDef(const Graph* g, GraphDef* gdef, bool pretty) {
// We visit nodes in forward topological sort order, which is a
// possible execution order of the graph.
std::vector<int> pending(g->num_node_ids());
std::vector<size_t> pending(g->num_node_ids());
std::deque<const Node*> ready;
for (const Node* n : g->nodes()) {
pending[n->id()] = n->in_edges().size();
@ -1154,7 +1155,7 @@ FunctionBody* SymbolicGradientHelper::Compute() {
Graph* g = gbody_->graph;
const int num_y = gbody_->ret_nodes.size();
const int num_y = static_cast<int>(gbody_->ret_nodes.size());
// Populate 'y_node_outputs_' with node function body outputs.
// Populate 'y_grad_nodes' with initial gradient nodes for each return node of
@ -1169,7 +1170,7 @@ FunctionBody* SymbolicGradientHelper::Compute() {
y_node_outputs.push_back({y, 0});
DCHECK_EQ(y->type_string(), kRetOp);
const DataType dtype = y->input_type(0);
const int index = gbody_->arg_nodes.size();
const int index = static_cast<int>(gbody_->arg_nodes.size());
Node* dy = AddArg(g, dtype, index);
gbody_->arg_types.push_back(dtype);
gbody_->arg_nodes.push_back(dy);
@ -1177,7 +1178,7 @@ FunctionBody* SymbolicGradientHelper::Compute() {
}
// Populate 'x_nodes' with function args (excluding 'y_grad_node_outputs').
const int num_x = fbody_->arg_nodes.size();
const size_t num_x = fbody_->arg_nodes.size();
std::vector<NodeOut> x_node_outputs;
x_node_outputs.reserve(num_x);
for (size_t i = 0; i < fbody_->arg_nodes.size(); ++i) {
@ -1200,7 +1201,8 @@ FunctionBody* SymbolicGradientHelper::Compute() {
gbody_->ret_nodes.clear();
// Add new return nodes to the function gradient body for each node
// in 'x_grad_nodes'.
for (size_t i = 0; i < fbody_->arg_types.size(); ++i) {
const int arg_types_size = static_cast<int>(fbody_->arg_types.size());
for (int i = 0; i < arg_types_size; ++i) {
Endpoint grad = {x_grad_node_outputs[i].node, x_grad_node_outputs[i].index};
Node* ret = AddRet(g, grad, i);
gbody_->ret_nodes.push_back(ret);

View File

@ -82,7 +82,7 @@ Status AssignStreams(const Graph* graph, const AssignStreamsOpts& opts,
// Determine a suitable stream to use.
int stream_id = highest_stream_id + 1;
for (const Edge* e : n->in_edges()) {
const int fanout = e->src()->out_edges().size();
const size_t fanout = e->src()->out_edges().size();
if (fanout == 1) {
stream_id = (*node_to_stream_id)[e->src()->id()];
break;

View File

@ -191,7 +191,7 @@ Allocator* ProcessState::GetCUDAHostAllocator(int numa_node) {
// example, process_state could maybe save the first stream executor
// it knows is valid.
gpu::StreamExecutor* se = nullptr;
for (size_t i = 0; i < gpu_allocators_.size(); ++i) {
for (int i = 0; i < static_cast<int>(gpu_allocators_.size()); ++i) {
if (gpu_allocators_[i] != nullptr) {
se = GPUMachineManager()->ExecutorForDevice(i).ValueOrDie();
break;

View File

@ -69,7 +69,7 @@ class PendingCounts {
// to retrieve the count data for this node.
class Layout {
public:
Handle CreateHandle(int max_pending_count, int max_dead_count);
Handle CreateHandle(size_t max_pending_count, size_t max_dead_count);
private:
friend class PendingCounts;
@ -91,7 +91,7 @@ class PendingCounts {
~PendingCounts() { delete[] bytes_; }
void set_initial_count(Handle h, int pending_count) {
void set_initial_count(Handle h, size_t pending_count) {
if (h.is_large_) {
LargeCounts* c = Large(h);
c->pending = pending_count;
@ -306,7 +306,7 @@ class PendingCounts {
};
inline PendingCounts::Handle PendingCounts::Layout::CreateHandle(
int max_pending_count, int max_dead_count) {
size_t max_pending_count, size_t max_dead_count) {
Handle result;
if ((max_pending_count > kMaxCountForPackedCounts) ||
(max_dead_count > kMaxCountForPackedCounts)) {

View File

@ -85,7 +85,7 @@ void MovingAverage::AddValue(double v) {
static char hex_char[] = "0123456789abcdef";
string PrintMemory(const char* ptr, int n) {
string PrintMemory(const char* ptr, size_t n) {
string ret;
ret.resize(n * 3);
for (int i = 0; i < n; ++i) {

View File

@ -49,7 +49,7 @@ class MovingAverage {
// Returns a string printing bytes in ptr[0..n). The output looks
// like "00 01 ef cd cd ef".
string PrintMemory(const char* ptr, int n);
string PrintMemory(const char* ptr, size_t n);
// Given a flattened index into a tensor, computes a string s so that
// StrAppend("tensor", s) is a Python indexing expression. E.g.,