From 074ede9a2371e188d27790f68b7b7ead82d8ef1d Mon Sep 17 00:00:00 2001 From: Andrew Selle Date: Thu, 4 May 2017 08:43:15 -0800 Subject: [PATCH] Adjust getting started guide to use a training and eval data set. Change: 155089162 --- .../docs_src/get_started/get_started.md | 51 ++++++++++++------- 1 file changed, 34 insertions(+), 17 deletions(-) diff --git a/tensorflow/docs_src/get_started/get_started.md b/tensorflow/docs_src/get_started/get_started.md index b52adc3790a..00cc10cd347 100644 --- a/tensorflow/docs_src/get_started/get_started.md +++ b/tensorflow/docs_src/get_started/get_started.md @@ -372,25 +372,36 @@ features = [tf.contrib.layers.real_valued_column("x", dimension=1)] estimator = tf.contrib.learn.LinearRegressor(feature_columns=features) # TensorFlow provides many helper methods to read and set up data sets. -# Here we use `numpy_input_fn`. We have to tell the function how many batches +# Here we use two data sets: one for training and one for evaluation +# We have to tell the function how many batches # of data (num_epochs) we want and how big each batch should be. -x = np.array([1., 2., 3., 4.]) -y = np.array([0., -1., -2., -3.]) -input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x}, y, batch_size=4, +x_train = np.array([1., 2., 3., 4.]) +y_train = np.array([0., -1., -2., -3.]) +x_eval = np.array([2., 5., 8., 1.]) +y_eval = np.array([-1.01, -4.1, -7, 0.]) +input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x_train}, y_train, + batch_size=4, num_epochs=1000) +eval_input_fn = tf.contrib.learn.io.numpy_input_fn( + {"x":x_eval}, y_eval, batch_size=4, num_epochs=1000) -# We can invoke 1000 training steps by invoking the `fit` method and passing the +# We can invoke 1000 training steps by invoking the method and passing the # training data set. estimator.fit(input_fn=input_fn, steps=1000) -# Here we evaluate how well our model did. In a real example, we would want -# to use a separate validation and testing data set to avoid overfitting. -print(estimator.evaluate(input_fn=input_fn)) +# Here we evaluate how well our model did. +train_loss = estimator.evaluate(input_fn=input_fn) +eval_loss = estimator.evaluate(input_fn=eval_input_fn) +print("train loss: %r"% train_loss) +print("eval loss: %r"% eval_loss) ``` When run, it produces ``` - {'global_step': 1000, 'loss': 1.9650059e-11} + train loss: {'global_step': 1000, 'loss': 4.3049088e-08} + eval loss: {'global_step': 1000, 'loss': 0.0025487561} ``` +Notice how our eval data has a higher loss, but it is still close to zero. +That means we are learning properly. ### A custom model @@ -432,19 +443,25 @@ def model(features, labels, mode): train_op=train) estimator = tf.contrib.learn.Estimator(model_fn=model) -# define our data set -x = np.array([1., 2., 3., 4.]) -y = np.array([0., -1., -2., -3.]) -input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x}, y, 4, num_epochs=1000) +# define our data sets +x_train = np.array([1., 2., 3., 4.]) +y_train = np.array([0., -1., -2., -3.]) +x_eval = np.array([2., 5., 8., 1.]) +y_eval = np.array([-1.01, -4.1, -7, 0.]) +input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x_train}, y_train, 4, num_epochs=1000) # train estimator.fit(input_fn=input_fn, steps=1000) -# evaluate our model -print(estimator.evaluate(input_fn=input_fn, steps=10)) +# Here we evaluate how well our model did. +train_loss = estimator.evaluate(input_fn=input_fn) +eval_loss = estimator.evaluate(input_fn=eval_input_fn) +print("train loss: %r"% train_loss) +print("eval loss: %r"% eval_loss) ``` When run, it produces -```python -{'loss': 5.9819476e-11, 'global_step': 1000} +``` +train loss: {'global_step': 1000, 'loss': 4.9380226e-11} +eval loss: {'global_step': 1000, 'loss': 0.01010081} ``` Notice how the contents of the custom `model()` function are very similar