From 2e88f70ff56f19add121330c7b9c61fbb81e67a5 Mon Sep 17 00:00:00 2001 From: aweers <32593524+aweers@users.noreply.github.com> Date: Sun, 24 Feb 2019 17:36:05 +0100 Subject: [PATCH] Added ```python for usage examples --- tensorflow/python/eager/backprop.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/tensorflow/python/eager/backprop.py b/tensorflow/python/eager/backprop.py index 694b05c1eea..801e3d6fa56 100644 --- a/tensorflow/python/eager/backprop.py +++ b/tensorflow/python/eager/backprop.py @@ -973,13 +973,15 @@ class GradientTape(object): definition of a Jacobian. Example usage: - + + ```python with tf.GradientTape() as g: x = tf.constant([1.0, 2.0]) g.watch(x) y = x * x jacobian = g.jacobian(y, x) # jacobian value is [[2., 0.], [0., 4.]] + ``` Args: target: Tensor to be differentiated. @@ -1082,12 +1084,14 @@ class GradientTape(object): result in the jacobian computation given the independence assumption. Example usage: + ```python with tf.GradientTape() as g: x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) g.watch(x) y = x * x batch_jacobian = g.batch_jacobian(y, x) # batch_jacobian is [[[2, 0], [0, 4]], [[6, 0], [0, 8]]] + ``` Args: target: A tensor with rank 2 or higher and with shape [b, y1, ..., y_n].