Automated rollback of commit 0d2f3be5eb

PiperOrigin-RevId: 296320816
Change-Id: Ib8b5857178fa10513755de65ffcde1adf6dabad3
This commit is contained in:
Zhenyu Tan 2020-02-20 16:11:36 -08:00 committed by TensorFlower Gardener
parent 7f6685951b
commit 0685f70521
3 changed files with 85 additions and 14 deletions

View File

@ -303,10 +303,9 @@ cuda_py_test(
)
tf_py_test(
name = "preprocessing_normalization_test",
name = "normalization_test",
size = "small",
srcs = ["normalization_test.py"],
main = "normalization_test.py",
python_version = "PY3",
deps = [
":normalization",
@ -317,10 +316,9 @@ tf_py_test(
)
tf_py_test(
name = "preprocessing_text_vectorization_test",
name = "text_vectorization_test",
size = "medium",
srcs = ["text_vectorization_test.py"],
main = "text_vectorization_test.py",
python_version = "PY3",
deps = [
":preprocessing_test_utils",

View File

@ -32,6 +32,7 @@ from tensorflow.python.ops import array_ops
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops.ragged import ragged_functional_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat
# The string tokens in the extracted vocabulary
@ -66,7 +67,13 @@ class IndexLookup(base_preprocessing_layer.CombinerPreprocessingLayer):
1. If this value is more than 1, OOV inputs are hashed to determine their
OOV value; if this value is 0, passing an OOV input will result in a
runtime error.
vocabulary: An optional list of vocabulary terms.
vocabulary: An optional list of vocabulary terms, or a path to a text file
containing a vocabulary to load into this layer. The file should contain
one token per line. In either case, the vocabulary must be unique; if
the list or file contains the same token multiple times, an error will
be thrown. Note that when passing a vocabulary - either as a list or as
a file - the vocabulary will not be present in the layer's config dict;
it will instead be a part of the layer's weights.
reserve_zero: Whether to reserve the index 0, which indicates pad values in
the Keras masking system. If True, the output of this layer will be in the
range `[1...max_tokens+1)`; if False, the output will be in the range
@ -164,10 +171,38 @@ class IndexLookup(base_preprocessing_layer.CombinerPreprocessingLayer):
self._inverse_table = None
if vocabulary is not None:
self._export_vocab = True
if isinstance(vocabulary, str):
vocabulary = self._get_vocabulary_from_file(vocabulary)
vocabulary_set = set(vocabulary)
if len(vocabulary) != len(vocabulary_set):
repeated_items = [
item for item, count in collections.Counter(vocabulary).items()
if count > 1
]
raise ValueError("The passed vocabulary has at least one repeated "
"term. Please uniquify your dataset before passing "
"it to IndexLookup(). The repeated terms are %s" %
repeated_items)
self.set_vocabulary(vocabulary)
else:
self._export_vocab = False
def _get_vocabulary_from_file(self, vocabulary_path):
vocab = []
with gfile.GFile(vocabulary_path, "r") as reader:
while True:
# Get the next line, and break if it is None.
text = reader.readline()
if not text:
break
# Convert the raw text into UTF8 and strip whitespace.
if isinstance(text, str):
token = text
elif isinstance(text, bytes):
token = text.decode("utf-8", "ignore")
token = token.strip()
vocab.append(token)
return vocab
def _get_table_data(self):
keys, values = self._table.export()
@ -256,11 +291,10 @@ class IndexLookup(base_preprocessing_layer.CombinerPreprocessingLayer):
return [x for _, x in sorted(zip(values, keys))]
def get_config(self):
vocabulary = self.get_vocabulary() if self._export_vocab else None
config = {
"max_tokens": self.max_tokens,
"num_oov_tokens": self.num_oov_tokens,
"vocabulary": vocabulary,
"vocabulary": None,
"reserve_zero": self.reserve_zero,
"mask_zero": self.mask_zero,
}

View File

@ -38,6 +38,7 @@ from tensorflow.python.keras.layers.preprocessing import preprocessing_test_util
from tensorflow.python.keras.saving import save
from tensorflow.python.keras.utils.generic_utils import CustomObjectScope
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
@ -356,7 +357,22 @@ class IndexLookupOutputTest(keras_parameterized.TestCase,
output_dataset = model.predict(input_array)
self.assertAllEqual(expected_output, output_dataset)
def test_int_output_explicit_vocab_from_config(self):
@keras_parameterized.run_all_keras_modes
class IndexLookupVocabularyTest(keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest
):
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
return vocab_path
def test_int_output_explicit_vocab(self):
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
@ -366,10 +382,22 @@ class IndexLookupOutputTest(keras_parameterized.TestCase,
layer = get_layer_class()(vocabulary=vocab_data)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
output_dataset = model.predict(input_array)
self.assertAllEqual(expected_output, output_dataset)
with CustomObjectScope({"IndexLookup": get_layer_class()}):
new_model = keras.Model.from_config(model.get_config())
output_dataset = new_model.predict(input_array)
def test_int_output_explicit_vocab_from_file(self):
vocab_list = ["earth", "wind", "and", "fire"]
vocab_path = self._write_to_temp_file("vocab_file", vocab_list)
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]]
input_data = keras.Input(shape=(None,), dtype=dtypes.string)
layer = get_layer_class()(vocabulary=vocab_path)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
output_dataset = model.predict(input_array)
self.assertAllEqual(expected_output, output_dataset)
def test_vocab_appending(self):
@ -387,6 +415,17 @@ class IndexLookupOutputTest(keras_parameterized.TestCase,
output_dataset = model.predict(input_array)
self.assertAllClose(expected_output, output_dataset)
def test_non_unique_vocab_fails(self):
vocab_data = ["earth", "wind", "and", "fire", "fire"]
with self.assertRaisesRegex(ValueError, ".*repeated term.*fire.*"):
_ = get_layer_class()(vocabulary=vocab_data)
def test_non_unique_vocab_from_file_fails(self):
vocab_list = ["earth", "wind", "and", "fire", "earth"]
vocab_path = self._write_to_temp_file("repeat_vocab_file", vocab_list)
with self.assertRaisesRegex(ValueError, ".*repeated term.*earth.*"):
_ = get_layer_class()(vocabulary=vocab_path)
@keras_parameterized.run_all_keras_modes
class InverseLookupOutputTest(keras_parameterized.TestCase,