Move keras related legacy RNN test to integration test.
Tests are run under compat.v1 and graph model. PiperOrigin-RevId: 305138425 Change-Id: I45054928f2aab86792f908752fe76fe057398b44
This commit is contained in:
parent
79985f62fc
commit
03ee7f43e8
@ -31,3 +31,13 @@ tf_py_test(
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
||||
tf_py_test(
|
||||
name = "legacy_rnn_test", # Remove this target in when TF 1 is deprecated.
|
||||
srcs = ["legacy_rnn_test.py"],
|
||||
python_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow:tensorflow_py",
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
388
tensorflow/python/keras/integration_test/legacy_rnn_test.py
Normal file
388
tensorflow/python/keras/integration_test/legacy_rnn_test.py
Normal file
@ -0,0 +1,388 @@
|
||||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
tf.disable_eager_execution()
|
||||
|
||||
|
||||
class KerasNetworkTFRNNs(tf.keras.Model):
|
||||
|
||||
def __init__(self, name=None):
|
||||
super(KerasNetworkTFRNNs, self).__init__(name=name)
|
||||
self._cell = tf.nn.rnn_cell.MultiRNNCell(
|
||||
[tf.nn.rnn_cell.LSTMCell(1) for _ in range(2)])
|
||||
|
||||
def call(self, inputs):
|
||||
return self._cell(inputs, self._cell.get_initial_state(inputs))
|
||||
|
||||
|
||||
class KerasNetworkKerasRNNs(tf.keras.Model):
|
||||
|
||||
def __init__(self, name=None):
|
||||
super(KerasNetworkKerasRNNs, self).__init__(name=name)
|
||||
self._cell = tf.keras.layers.StackedRNNCells(
|
||||
[tf.keras.layers.LSTMCell(1) for _ in range(2)])
|
||||
|
||||
def call(self, inputs):
|
||||
return self._cell(inputs, self._cell.get_initial_state(inputs))
|
||||
|
||||
|
||||
class LegacyRNNTest(tf.test.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super(LegacyRNNTest, self).setUp()
|
||||
self._seed = 23489
|
||||
np.random.seed(self._seed)
|
||||
|
||||
def testRNNWithKerasSimpleRNNCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
cell = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
predict = tf.placeholder(
|
||||
tf.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = tf.losses.softmax_cross_entropy(predict, state)
|
||||
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([tf.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
def testRNNWithKerasGRUCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
cell = tf.keras.layers.GRUCell(output_shape)
|
||||
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
predict = tf.placeholder(
|
||||
tf.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = tf.losses.softmax_cross_entropy(predict, state)
|
||||
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([tf.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
def testRNNWithKerasLSTMCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
cell = tf.keras.layers.LSTMCell(output_shape)
|
||||
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
predict = tf.placeholder(
|
||||
tf.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(len(state), 2)
|
||||
self.assertEqual(state[0].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state[1].shape.as_list(), [None, output_shape])
|
||||
loss = tf.losses.softmax_cross_entropy(predict, state[0])
|
||||
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([tf.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), 2)
|
||||
self.assertEqual(len(state[0]), batch)
|
||||
self.assertEqual(len(state[1]), batch)
|
||||
|
||||
def testRNNWithStackKerasCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
cell = tf.keras.layers.StackedRNNCells(
|
||||
[tf.keras.layers.LSTMCell(2 * output_shape),
|
||||
tf.keras.layers.LSTMCell(output_shape)])
|
||||
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
predict = tf.placeholder(
|
||||
tf.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(len(state), 2)
|
||||
state = tf.nest.flatten(state)
|
||||
self.assertEqual(len(state), 4)
|
||||
self.assertEqual(state[0].shape.as_list(), [None, 2 * output_shape])
|
||||
self.assertEqual(state[1].shape.as_list(), [None, 2 * output_shape])
|
||||
self.assertEqual(state[2].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state[3].shape.as_list(), [None, output_shape])
|
||||
loss = tf.losses.softmax_cross_entropy(predict, state[2])
|
||||
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([tf.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), 4)
|
||||
for s in state:
|
||||
self.assertEqual(len(s), batch)
|
||||
|
||||
def testStaticRNNWithKerasSimpleRNNCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
x_train = np.transpose(x_train, (1, 0, 2))
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
cell = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
|
||||
inputs = [tf.placeholder(
|
||||
tf.float32, shape=(None, input_shape))] * timestep
|
||||
predict = tf.placeholder(
|
||||
tf.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = tf.nn.static_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
self.assertEqual(len(outputs), timestep)
|
||||
self.assertEqual(outputs[0].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = tf.losses.softmax_cross_entropy(predict, state)
|
||||
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([tf.global_variables_initializer()])
|
||||
feed_dict = {i: d for i, d in zip(inputs, x_train)}
|
||||
feed_dict[predict] = y_train
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], feed_dict)
|
||||
|
||||
self.assertEqual(len(outputs), timestep)
|
||||
self.assertEqual(len(outputs[0]), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
def testKerasAndTFRNNLayerOutputComparison(self):
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 20
|
||||
(x_train, _), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
fix_weights_generator = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
fix_weights_generator.build((None, input_shape))
|
||||
weights = fix_weights_generator.get_weights()
|
||||
|
||||
with self.session(graph=tf.Graph()) as sess:
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
cell = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
tf_out, tf_state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
cell.set_weights(weights)
|
||||
[tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train})
|
||||
with self.session(graph=tf.Graph()) as sess:
|
||||
k_input = tf.keras.Input(shape=(timestep, input_shape),
|
||||
dtype=tf.float32)
|
||||
cell = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
layer = tf.keras.layers.RNN(
|
||||
cell, return_sequences=True, return_state=True)
|
||||
keras_out = layer(k_input)
|
||||
cell.set_weights(weights)
|
||||
k_out, k_state = sess.run(keras_out, {k_input: x_train})
|
||||
self.assertAllClose(tf_out, k_out)
|
||||
self.assertAllClose(tf_state, k_state)
|
||||
|
||||
def testSimpleRNNCellAndBasicRNNCellComparison(self):
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 20
|
||||
(x_train, _), _ = get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
fix_weights_generator = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
fix_weights_generator.build((None, input_shape))
|
||||
# The SimpleRNNCell contains 3 weights: kernel, recurrent_kernel, and bias
|
||||
# The BasicRNNCell contains 2 weight: kernel and bias, where kernel is
|
||||
# zipped [kernel, recurrent_kernel] in SimpleRNNCell.
|
||||
keras_weights = fix_weights_generator.get_weights()
|
||||
kernel, recurrent_kernel, bias = keras_weights
|
||||
tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias]
|
||||
|
||||
with self.session(graph=tf.Graph()) as sess:
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
cell = tf.keras.layers.SimpleRNNCell(output_shape)
|
||||
k_out, k_state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
cell.set_weights(keras_weights)
|
||||
[k_out, k_state] = sess.run([k_out, k_state], {inputs: x_train})
|
||||
with self.session(graph=tf.Graph()) as sess:
|
||||
inputs = tf.placeholder(
|
||||
tf.float32, shape=(None, timestep, input_shape))
|
||||
cell = tf.nn.rnn_cell.BasicRNNCell(output_shape)
|
||||
tf_out, tf_state = tf.nn.dynamic_rnn(
|
||||
cell, inputs, dtype=tf.float32)
|
||||
cell.set_weights(tf_weights)
|
||||
[tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train})
|
||||
|
||||
self.assertAllClose(tf_out, k_out, atol=1e-5)
|
||||
self.assertAllClose(tf_state, k_state, atol=1e-5)
|
||||
|
||||
def testRNNCellSerialization(self):
|
||||
for cell in [
|
||||
tf.nn.rnn_cell.LSTMCell(32, use_peepholes=True, cell_clip=True),
|
||||
tf.nn.rnn_cell.BasicLSTMCell(32, dtype=tf.float32),
|
||||
tf.nn.rnn_cell.BasicRNNCell(32, activation="relu", dtype=tf.float32),
|
||||
tf.nn.rnn_cell.GRUCell(32, dtype=tf.float32)
|
||||
]:
|
||||
with self.cached_session():
|
||||
x = tf.keras.Input((None, 5))
|
||||
layer = tf.keras.layers.RNN(cell)
|
||||
y = layer(x)
|
||||
model = tf.keras.models.Model(x, y)
|
||||
model.compile(optimizer="rmsprop", loss="mse")
|
||||
|
||||
# Test basic case serialization.
|
||||
x_np = np.random.random((6, 5, 5))
|
||||
y_np = model.predict(x_np)
|
||||
weights = model.get_weights()
|
||||
config = layer.get_config()
|
||||
# The custom_objects is important here since rnn_cell_impl is
|
||||
# not visible as a Keras layer, and also has a name conflict with
|
||||
# keras.LSTMCell and GRUCell.
|
||||
layer = tf.keras.layers.RNN.from_config(
|
||||
config,
|
||||
custom_objects={
|
||||
"BasicRNNCell": tf.nn.rnn_cell.BasicRNNCell,
|
||||
"GRUCell": tf.nn.rnn_cell.GRUCell,
|
||||
"LSTMCell": tf.nn.rnn_cell.LSTMCell,
|
||||
"BasicLSTMCell": tf.nn.rnn_cell.BasicLSTMCell
|
||||
})
|
||||
y = layer(x)
|
||||
model = tf.keras.models.Model(x, y)
|
||||
model.set_weights(weights)
|
||||
y_np_2 = model.predict(x_np)
|
||||
self.assertAllClose(y_np, y_np_2, atol=1e-4)
|
||||
|
||||
def testRNNCellActsLikeKerasRNNCellInProperScope(self):
|
||||
with tf.layers.experimental.keras_style_scope():
|
||||
kn1 = KerasNetworkTFRNNs(name="kn1")
|
||||
kn2 = KerasNetworkKerasRNNs(name="kn2")
|
||||
|
||||
z = tf.zeros((2, 3))
|
||||
|
||||
kn1(z) # pylint:disable=not-callable
|
||||
kn2(z) # pylint:disable=not-callable
|
||||
|
||||
# pylint: disable=protected-access
|
||||
self.assertTrue(all("kn1" in v.name for v in kn1._cell.variables))
|
||||
self.assertTrue(all("kn2" in v.name for v in kn2._cell.variables))
|
||||
|
||||
with tf.layers.experimental.keras_style_scope():
|
||||
kn1_new = KerasNetworkTFRNNs(name="kn1_new")
|
||||
kn2_new = KerasNetworkKerasRNNs(name="kn2_new")
|
||||
|
||||
kn2_new(z) # pylint:disable=not-callable
|
||||
# Most importantly, this doesn't fail due to variable scope reuse issues.
|
||||
kn1_new(z) # pylint:disable=not-callable
|
||||
|
||||
self.assertTrue(all("kn1_new" in v.name for v in kn1_new._cell.variables))
|
||||
self.assertTrue(all("kn2_new" in v.name for v in kn2_new._cell.variables))
|
||||
|
||||
|
||||
def get_test_data(train_samples,
|
||||
test_samples,
|
||||
input_shape,
|
||||
num_classes):
|
||||
num_sample = train_samples + test_samples
|
||||
templates = 2 * num_classes * np.random.random((num_classes,) + input_shape)
|
||||
y = np.random.randint(0, num_classes, size=(num_sample,))
|
||||
x = np.zeros((num_sample,) + input_shape, dtype=np.float32)
|
||||
for i in range(num_sample):
|
||||
x[i] = templates[y[i]] + np.random.normal(loc=0, scale=1., size=input_shape)
|
||||
return ((x[:train_samples], y[:train_samples]),
|
||||
(x[train_samples:], y[train_samples:]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
@ -26,7 +26,6 @@ import numpy as np
|
||||
|
||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
||||
from tensorflow.core.protobuf import config_pb2
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.client import session
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import constant_op
|
||||
@ -34,10 +33,6 @@ from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops as ops_lib
|
||||
from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras import testing_utils
|
||||
from tensorflow.python.keras.engine import network as keras_network
|
||||
from tensorflow.python.keras.utils import np_utils
|
||||
from tensorflow.python.layers import base as base_layers
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import control_flow_ops
|
||||
from tensorflow.python.ops import gradients_impl
|
||||
@ -47,14 +42,11 @@ from tensorflow.python.ops import rnn_cell_impl
|
||||
from tensorflow.python.ops import tensor_array_ops
|
||||
from tensorflow.python.ops import variables as variables_lib
|
||||
import tensorflow.python.ops.data_flow_grad # pylint: disable=unused-import
|
||||
from tensorflow.python.ops.losses import losses
|
||||
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
||||
import tensorflow.python.ops.sparse_grad # pylint: disable=unused-import
|
||||
import tensorflow.python.ops.tensor_array_grad # pylint: disable=unused-import
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.training import saver
|
||||
from tensorflow.python.training import training
|
||||
from tensorflow.python.util import nest
|
||||
|
||||
|
||||
class Plus1RNNCell(rnn_cell_impl.RNNCell):
|
||||
@ -130,28 +122,6 @@ class TensorArrayStateRNNCell(rnn_cell_impl.RNNCell):
|
||||
return (input_, (state[0] + 1, new_array))
|
||||
|
||||
|
||||
class KerasNetworkTFRNNs(keras_network.Network):
|
||||
|
||||
def __init__(self, name=None):
|
||||
super(KerasNetworkTFRNNs, self).__init__(name=name)
|
||||
self._cell = rnn_cell_impl.MultiRNNCell(
|
||||
[rnn_cell_impl.LSTMCell(1) for _ in range(2)])
|
||||
|
||||
def call(self, inputs):
|
||||
return self._cell(inputs, self._cell.get_initial_state(inputs))
|
||||
|
||||
|
||||
class KerasNetworkKerasRNNs(keras_network.Network):
|
||||
|
||||
def __init__(self, name=None):
|
||||
super(KerasNetworkKerasRNNs, self).__init__(name=name)
|
||||
self._cell = keras.layers.StackedRNNCells(
|
||||
[keras.layers.LSTMCell(1) for _ in range(2)])
|
||||
|
||||
def call(self, inputs):
|
||||
return self._cell(inputs, self._cell.get_initial_state(inputs))
|
||||
|
||||
|
||||
class RNNTest(test.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
@ -361,269 +331,6 @@ class RNNTest(test.TestCase):
|
||||
self._assert_cell_builds(rnn_cell_impl.LSTMCell, f32, 5, 7, 3)
|
||||
self._assert_cell_builds(rnn_cell_impl.LSTMCell, f64, 5, 7, 3)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testRNNWithKerasSimpleRNNCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
cell = keras.layers.SimpleRNNCell(output_shape)
|
||||
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
predict = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = losses.softmax_cross_entropy(predict, state)
|
||||
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([variables_lib.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testRNNWithKerasGRUCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
cell = keras.layers.GRUCell(output_shape)
|
||||
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
predict = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = losses.softmax_cross_entropy(predict, state)
|
||||
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([variables_lib.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testRNNWithKerasLSTMCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
cell = keras.layers.LSTMCell(output_shape)
|
||||
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
predict = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(len(state), 2)
|
||||
self.assertEqual(state[0].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state[1].shape.as_list(), [None, output_shape])
|
||||
loss = losses.softmax_cross_entropy(predict, state[0])
|
||||
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([variables_lib.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), 2)
|
||||
self.assertEqual(len(state[0]), batch)
|
||||
self.assertEqual(len(state[1]), batch)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testRNNWithStackKerasCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
cell = keras.layers.StackedRNNCells(
|
||||
[keras.layers.LSTMCell(2 * output_shape),
|
||||
keras.layers.LSTMCell(output_shape)])
|
||||
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
predict = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
|
||||
self.assertEqual(len(state), 2)
|
||||
state = nest.flatten(state)
|
||||
self.assertEqual(len(state), 4)
|
||||
self.assertEqual(state[0].shape.as_list(), [None, 2 * output_shape])
|
||||
self.assertEqual(state[1].shape.as_list(), [None, 2 * output_shape])
|
||||
self.assertEqual(state[2].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state[3].shape.as_list(), [None, output_shape])
|
||||
loss = losses.softmax_cross_entropy(predict, state[2])
|
||||
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([variables_lib.global_variables_initializer()])
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], {inputs: x_train, predict: y_train})
|
||||
|
||||
self.assertEqual(len(outputs), batch)
|
||||
self.assertEqual(len(state), 4)
|
||||
for s in state:
|
||||
self.assertEqual(len(s), batch)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testStaticRNNWithKerasSimpleRNNCell(self):
|
||||
with self.cached_session() as sess:
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 100
|
||||
(x_train, y_train), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
x_train = np.transpose(x_train, (1, 0, 2))
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
cell = keras.layers.SimpleRNNCell(output_shape)
|
||||
|
||||
inputs = [array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, input_shape))] * timestep
|
||||
predict = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, output_shape))
|
||||
|
||||
outputs, state = rnn.static_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
self.assertEqual(len(outputs), timestep)
|
||||
self.assertEqual(outputs[0].shape.as_list(), [None, output_shape])
|
||||
self.assertEqual(state.shape.as_list(), [None, output_shape])
|
||||
loss = losses.softmax_cross_entropy(predict, state)
|
||||
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
|
||||
|
||||
sess.run([variables_lib.global_variables_initializer()])
|
||||
feed_dict = {i: d for i, d in zip(inputs, x_train)}
|
||||
feed_dict[predict] = y_train
|
||||
_, outputs, state = sess.run(
|
||||
[train_op, outputs, state], feed_dict)
|
||||
|
||||
self.assertEqual(len(outputs), timestep)
|
||||
self.assertEqual(len(outputs[0]), batch)
|
||||
self.assertEqual(len(state), batch)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testKerasAndTFRNNLayerOutputComparison(self):
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 20
|
||||
(x_train, _), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
fix_weights_generator = keras.layers.SimpleRNNCell(output_shape)
|
||||
fix_weights_generator.build((None, input_shape))
|
||||
weights = fix_weights_generator.get_weights()
|
||||
|
||||
with self.session(graph=ops_lib.Graph()) as sess:
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
cell = keras.layers.SimpleRNNCell(output_shape)
|
||||
tf_out, tf_state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
cell.set_weights(weights)
|
||||
[tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train})
|
||||
with self.session(graph=ops_lib.Graph()) as sess:
|
||||
k_input = keras.Input(shape=(timestep, input_shape),
|
||||
dtype=dtypes.float32)
|
||||
cell = keras.layers.SimpleRNNCell(output_shape)
|
||||
layer = keras.layers.RNN(cell, return_sequences=True, return_state=True)
|
||||
keras_out = layer(k_input)
|
||||
cell.set_weights(weights)
|
||||
k_out, k_state = sess.run(keras_out, {k_input: x_train})
|
||||
self.assertAllClose(tf_out, k_out)
|
||||
self.assertAllClose(tf_state, k_state)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testSimpleRNNCellAndBasicRNNCellComparison(self):
|
||||
input_shape = 10
|
||||
output_shape = 5
|
||||
timestep = 4
|
||||
batch = 20
|
||||
(x_train, _), _ = testing_utils.get_test_data(
|
||||
train_samples=batch,
|
||||
test_samples=0,
|
||||
input_shape=(timestep, input_shape),
|
||||
num_classes=output_shape)
|
||||
fix_weights_generator = keras.layers.SimpleRNNCell(output_shape)
|
||||
fix_weights_generator.build((None, input_shape))
|
||||
# The SimpleRNNCell contains 3 weights: kernel, recurrent_kernel, and bias
|
||||
# The BasicRNNCell contains 2 weight: kernel and bias, where kernel is
|
||||
# zipped [kernel, recurrent_kernel] in SimpleRNNCell.
|
||||
keras_weights = fix_weights_generator.get_weights()
|
||||
kernel, recurrent_kernel, bias = keras_weights
|
||||
tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias]
|
||||
|
||||
with self.session(graph=ops_lib.Graph()) as sess:
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
cell = keras.layers.SimpleRNNCell(output_shape)
|
||||
k_out, k_state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
cell.set_weights(keras_weights)
|
||||
[k_out, k_state] = sess.run([k_out, k_state], {inputs: x_train})
|
||||
with self.session(graph=ops_lib.Graph()) as sess:
|
||||
inputs = array_ops.placeholder(
|
||||
dtypes.float32, shape=(None, timestep, input_shape))
|
||||
cell = rnn_cell_impl.BasicRNNCell(output_shape)
|
||||
tf_out, tf_state = rnn.dynamic_rnn(
|
||||
cell, inputs, dtype=dtypes.float32)
|
||||
cell.set_weights(tf_weights)
|
||||
[tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train})
|
||||
|
||||
self.assertAllClose(tf_out, k_out, atol=1e-5)
|
||||
self.assertAllClose(tf_state, k_state, atol=1e-5)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testBasicLSTMCellInterchangeWithLSTMCell(self):
|
||||
with self.session(graph=ops_lib.Graph()) as sess:
|
||||
@ -649,70 +356,6 @@ class RNNTest(test.TestCase):
|
||||
save.restore(sess, save_path)
|
||||
self.assertAllEqual([10.] * 4, self.evaluate(lstm_cell._bias))
|
||||
|
||||
# TODO(scottzhu): Look into updating for V2 Initializers.
|
||||
@test_util.run_deprecated_v1
|
||||
def testRNNCellSerialization(self):
|
||||
for cell in [
|
||||
rnn_cell_impl.LSTMCell(32, use_peepholes=True, cell_clip=True),
|
||||
rnn_cell_impl.BasicLSTMCell(32, dtype=dtypes.float32),
|
||||
rnn_cell_impl.BasicRNNCell(32, activation="relu", dtype=dtypes.float32),
|
||||
rnn_cell_impl.GRUCell(32, dtype=dtypes.float32)
|
||||
]:
|
||||
with self.cached_session():
|
||||
x = keras.Input((None, 5))
|
||||
layer = keras.layers.RNN(cell)
|
||||
y = layer(x)
|
||||
model = keras.models.Model(x, y)
|
||||
model.compile(optimizer="rmsprop", loss="mse")
|
||||
|
||||
# Test basic case serialization.
|
||||
x_np = np.random.random((6, 5, 5))
|
||||
y_np = model.predict(x_np)
|
||||
weights = model.get_weights()
|
||||
config = layer.get_config()
|
||||
# The custom_objects is important here since rnn_cell_impl is
|
||||
# not visible as a Keras layer, and also has a name conflict with
|
||||
# keras.LSTMCell and GRUCell.
|
||||
layer = keras.layers.RNN.from_config(
|
||||
config,
|
||||
custom_objects={
|
||||
"BasicRNNCell": rnn_cell_impl.BasicRNNCell,
|
||||
"GRUCell": rnn_cell_impl.GRUCell,
|
||||
"LSTMCell": rnn_cell_impl.LSTMCell,
|
||||
"BasicLSTMCell": rnn_cell_impl.BasicLSTMCell
|
||||
})
|
||||
y = layer(x)
|
||||
model = keras.models.Model(x, y)
|
||||
model.set_weights(weights)
|
||||
y_np_2 = model.predict(x_np)
|
||||
self.assertAllClose(y_np, y_np_2, atol=1e-4)
|
||||
|
||||
def testRNNCellActsLikeKerasRNNCellInProperScope(self):
|
||||
with base_layers.keras_style_scope():
|
||||
kn1 = KerasNetworkTFRNNs(name="kn1")
|
||||
kn2 = KerasNetworkKerasRNNs(name="kn2")
|
||||
|
||||
z = array_ops.zeros((2, 3))
|
||||
|
||||
kn1(z)
|
||||
kn2(z)
|
||||
|
||||
# pylint: disable=protected-access
|
||||
self.assertTrue(all("kn1" in v.name for v in kn1._cell.variables))
|
||||
self.assertTrue(all("kn2" in v.name for v in kn2._cell.variables))
|
||||
|
||||
with base_layers.keras_style_scope():
|
||||
kn1_new = KerasNetworkTFRNNs(name="kn1_new")
|
||||
kn2_new = KerasNetworkKerasRNNs(name="kn2_new")
|
||||
|
||||
kn2_new(z)
|
||||
# Most importantly, this doesn't fail due to variable scope reuse issues.
|
||||
kn1_new(z)
|
||||
|
||||
self.assertTrue(all("kn1_new" in v.name for v in kn1_new._cell.variables))
|
||||
self.assertTrue(all("kn2_new" in v.name for v in kn2_new._cell.variables))
|
||||
|
||||
|
||||
######### Benchmarking RNN code
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user