Merge pull request #44101 from TylerADavis:patch-1
PiperOrigin-RevId: 339833238 Change-Id: I8741a57de5b1adda350b59bb376c60449b3f08be
This commit is contained in:
commit
02b4da03bb
@ -5,18 +5,16 @@ TensorFlow Lite model and use it to recognize objects in images. The Python
|
||||
script accepts arguments specifying the model to use, the corresponding labels
|
||||
file, and the image to process.
|
||||
|
||||
**Tip:**
|
||||
If you're using a Raspberry Pi, instead try the [classify_picamera.py example](
|
||||
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/raspberry_pi).
|
||||
|
||||
Before you begin,
|
||||
make sure you [have TensorFlow installed](https://www.tensorflow.org/install).
|
||||
**Tip:** If you're using a Raspberry Pi, instead try the
|
||||
[classify_picamera.py example](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/raspberry_pi).
|
||||
|
||||
Before you begin, make sure you
|
||||
[have TensorFlow installed](https://www.tensorflow.org/install).
|
||||
|
||||
## Download sample model and image
|
||||
|
||||
You can use any compatible model, but the following MobileNet v1 model offers
|
||||
a good demonstration of a model trained to recognize 1,000 different objects.
|
||||
You can use any compatible model, but the following MobileNet v1 model offers a
|
||||
good demonstration of a model trained to recognize 1,000 different objects.
|
||||
|
||||
```sh
|
||||
# Get photo
|
||||
@ -31,8 +29,6 @@ mv /tmp/mobilenet_v1_1.0_224/labels.txt /tmp/
|
||||
|
||||
## Run the sample
|
||||
|
||||
Note: Instead use `python` if you're using Python 2.x.
|
||||
|
||||
```sh
|
||||
python3 label_image.py \
|
||||
--model_file /tmp/mobilenet_v1_1.0_224.tflite \
|
||||
|
Loading…
Reference in New Issue
Block a user