diff --git a/tensorflow/docs_src/programmers_guide/leftnav_files b/tensorflow/docs_src/programmers_guide/leftnav_files
index d3979172190..322e11cbd69 100644
--- a/tensorflow/docs_src/programmers_guide/leftnav_files
+++ b/tensorflow/docs_src/programmers_guide/leftnav_files
@@ -8,6 +8,7 @@ supervisor.md
 debugger.md
 tfdbg-tflearn.md
 meta_graph.md
+saved_model_cli.md
 version_semantics.md
 data_versions.md
 faq.md
diff --git a/tensorflow/docs_src/programmers_guide/saved_model_cli.md b/tensorflow/docs_src/programmers_guide/saved_model_cli.md
new file mode 100644
index 00000000000..eb9e60e42ed
--- /dev/null
+++ b/tensorflow/docs_src/programmers_guide/saved_model_cli.md
@@ -0,0 +1,251 @@
+# SavedModel CLI (Command-Line Interface)
+
+[`SavedModel`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md)
+is a universal serialization format for Tensorflow. It provides a
+language-neutral format to save machine-learned models and enables higher-level
+systems and tools to produce, consume and transform TensorFlow models.
+
+We provide SavedModel CLI(command-line interface) as a tool to inspect and
+execute a [`MetaGraph`](https://www.tensorflow.org/programmers_guide/meta_graph)
+in a SavedModel. You can inspect for example, what
+[`SignatureDefs`](https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/signature_defs.md),
+including their input and output tensors, are in the model without writing any
+code. This can be useful in situations such as when you want to quickly check
+your input dtype and shape match with the model. Moreover, if you want to test
+out the model, it also allows you to do a sanity check by passing in sample
+inputs in the format of for example, python expressions, and fetch the outputs
+simply through command line.
+
+## Get SavedModel CLI
+
+If TensorFlow is installed on your system through pip, the `saved_model_cli`
+binary can be invoked directly from command line.
+
+To build the binary from source, run the following command:
+
+```
+$bazel build tensorflow/python/tools:saved_model_cli
+```
+
+## Commands
+
+SavedModel CLI allows users to both show and run computations on a
+[`MetaGraphDef`](https://www.tensorflow.org/code/tensorflow/core/protobuf/meta_graph.proto)
+in a SavedModel. These are done through `show` and `run` commands. We will
+explain the usages of both commands with detailed examples. SavedModel CLI will
+also display this information with `-h` option.
+
+### `show` command
+
+A SavedModel contains one or more MetaGraphs, identified by their tag-sets. Each
+MetaGraph contains both a TensorFlow GraphDef as well as associated metadata
+necessary for running computation in a graph. In order to serve a model, you
+might wonder what kind of SignatureDefs are in each model, and what are their
+inputs and outputs etc. The `show` command let you examine the content of the
+SavedModel in a hierarchical order.
+
+```
+usage: saved_model_cli show [-h] --dir DIR [--all]
+[--tag_set TAG_SET] [--signature_def SIGNATURE_DEF_KEY]
+```
+
+#### Examples
+
+To show all available MetaGraphDef tag-sets in the SavedModel:
+
+```
+$saved_model_cli show --dir /tmp/saved_model_dir
+The given SavedModel contains the following tag-sets:
+serve
+serve, gpu
+```
+
+To show all available SignatureDef keys in a MetaGraphDef:
+
+```
+$saved_model_cli show --dir /tmp/saved_model_dir --tag_set serve
+The given SavedModel MetaGraphDef contains SignatureDefs with the following keys:
+SignatureDef key: "classify_x2_to_y3"
+SignatureDef key: "classify_x_to_y"
+SignatureDef key: "regress_x2_to_y3"
+SignatureDef key: "regress_x_to_y"
+SignatureDef key: "regress_x_to_y2"
+SignatureDef key: "serving_default"
+```
+
+For a MetaGraphDef with multiple tags in the tag-set, all tags must be passed
+in, separated by ',':
+
+```
+$saved_model_cli show --dir /tmp/saved_model_dir --tag_set serve,gpu
+```
+
+To show all inputs and outputs TensorInfo for a specific SignatureDef, pass in
+the SignatureDef key to `signature_def` option. This is very useful when you
+want to know the tensor key value, dtype and shape of the input tensors for
+executing the computation graph later.
+
+```
+$saved_model_cli show --dir \
+/tmp/saved_model_dir --tag_set serve --signature_def serving_default
+The given SavedModel SignatureDef contains the following input(s):
+inputs['x'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: x:0
+The given SavedModel SignatureDef contains the following output(s):
+outputs['y'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: y:0
+Method name is: tensorflow/serving/predict
+```
+
+To show all available information in the SavedModel, use `--all` option:
+
+```
+$saved_model_cli show --dir /tmp/saved_model_dir --all
+MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
+
+signature_def['classify_x2_to_y3']:
+The given SavedModel SignatureDef contains the following input(s):
+inputs['inputs'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: x2:0
+The given SavedModel SignatureDef contains the following output(s):
+outputs['scores'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: y3:0
+Method name is: tensorflow/serving/classify
+
+...
+
+signature_def['serving_default']:
+The given SavedModel SignatureDef contains the following input(s):
+inputs['x'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: x:0
+The given SavedModel SignatureDef contains the following output(s):
+outputs['y'] tensor_info:
+    dtype: DT_FLOAT
+    shape: (-1, 1)
+    name: y:0
+Method name is: tensorflow/serving/predict
+```
+
+### `run` command
+
+SavedModel CLI also allows you to run a graph computation by passing in inputs,
+displaying, and saving the outputs.
+
+```
+usage: saved_model_cli run [-h] --dir DIR --tag_set TAG_SET --signature_def
+                           SIGNATURE_DEF_KEY [--inputs INPUTS]
+                           [--input_exprs INPUT_EXPRS] [--outdir OUTDIR]
+                           [--overwrite] [--tf_debug]
+```
+
+Tensor keys are used to specify which input we are passing in the values for.
+There are two ways to pass inputs to the model. With '--inputs' option, you can
+pass in numpy ndarray by files. With '--input_exprs' option, you can use python
+expressions as inputs.
+
+#### Input By File
+
+To pass in inputs by files, use `--inputs` option in the format of
+`<input_key>=<filename>`, or `<input_key>=<filename>[<variable_name>]`. Each
+input is separated by semicolon. File specified by `filename` will be loaded
+using `numpy.load`. Inputs can be loaded from only `.npy`, `.npz` or pickle
+files. The `variable_name` key is optional depending on the input file type as
+descripted in more details below.
+
+When loading from a `.npy` file, which always contains a numpy ndarray, the
+content will be directly assigned to the specified input tensor. If a
+`variable_name` is specified, it will be ignored and a warning will be issued.
+
+When loading from a `.npz` zip file, user can specify which variable within the
+zip file to load for the input tensor key with `variable_name`. If nothing is
+specified, SavedModel CLI will check that only one file is included in the zip
+file and load it for the specified input tensor key.
+
+When loading from a pickle file, if no `variable_name` is specified in the
+square brackets, whatever that is inside the pickle file will be passed to the
+specified input tensor key. Else SavedModel CLI will assume a dictionary is
+stored in the pickle file and the value corresponding to the variable_name will
+be used.
+
+#### Input By Python Expression
+
+To pass in inputs by python expressions, use `--input_exprs` option. `numpy`
+module is available as `np`. For example, `input_key=np.ones((32, 32, 3))` or
+`input_key=[[1], [2], [3]]`. This can be useful for when you don't have data
+files lying around, but still want to sanity check the model with some simple
+inputs that match the dtype and shape of the model signature.
+
+#### Save Output
+
+By default, SavedModel CLI will print outputs to console. If a directory is
+passed to `--outdir` option, the outputs will be saved as npy files named after
+output tensor keys under the given directory. Use `--overwite` to overwrite
+existing output files.
+
+#### TensorFlow Debugger (tfdbg) Integration
+
+If `--tf_debug` option is set, SavedModel CLI will use TensorFlow Debugger
+(tfdbg) to watch the intermediate Tensors and runtime GraphDefs while running
+the SavedModel.
+
+#### Examples
+
+If we have a simple model that adds `x1` and `x2` to get output `y`, where all
+tensors are of shape `(-1, 1)`, and we have two `npz` files. File
+`/tmp/my_data1.npy` contains a numpy ndarray `[[1], [2], [3]]`, file
+`/tmp/my_data2.npy` contains another numpy ndarray `[[0.5], [0.5], [0.5]]`. Now
+let's run these two `npy` files through the model to get `y`:
+
+```
+$saved_model_cli run --dir /tmp/saved_model_dir --tag_set serve \
+--signature_def x1_x2_to_y --inputs x1=/tmp/my_data1.npy;x2=/tmp/my_data2.npy \
+--outdir /tmp/out
+Result for output key y:
+[[ 1.5]
+ [ 2.5]
+ [ 3.5]]
+```
+
+Similarly, we can run input tensors from `npz` file and pickle file, as well as
+overwrite the previous output file:
+
+```
+$saved_model_cli run --dir /tmp/saved_model_dir --tag_set serve \
+--signature_def x1_x2_to_y \
+--inputs x1=/tmp/my_data1.npz[x];x2=/tmp/my_data2.pkl --outdir /tmp/out \
+--overwrite
+Result for output key y:
+[[ 1.5]
+ [ 2.5]
+ [ 3.5]]
+```
+
+You can also use python expression instead of input file. Here we replace input
+`x2` with a python expression:
+
+```
+$saved_model_cli run --dir /tmp/saved_model_dir --tag_set serve \
+--signature_def x1_x2_to_y --inputs x1=/tmp/my_data1.npz[x] \
+--input_exprs 'x2=np.ones((3,1))'
+Result for output key y:
+[[ 2]
+ [ 3]
+ [ 4]]
+```
+
+To run model with TensorFlow Debugger on:
+
+```
+$saved_model_cli run --dir /tmp/saved_model_dir --tag_set serve \
+--signature_def serving_default --inputs x=/tmp/data.npz[x] --tf_debug
+```
diff --git a/tensorflow/python/tools/saved_model_cli.py b/tensorflow/python/tools/saved_model_cli.py
index 1c55c5bf531..9dfafb77e7d 100644
--- a/tensorflow/python/tools/saved_model_cli.py
+++ b/tensorflow/python/tools/saved_model_cli.py
@@ -602,7 +602,8 @@ def create_parser():
              '--signature_def serving_default '
              '--inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy'
              '--outdir=/out\n\n'
-             'For more information about input file format, please see:\n')
+             'For more information about input file format, please see:\n'
+             'https://www.tensorflow.org/programmers_guide/saved_model_cli\n')
   parser_run = subparsers.add_parser(
       'run', description=run_msg, formatter_class=argparse.RawTextHelpFormatter)
   parser_run.add_argument(