Merge pull request #2503 from caisq/123201123
Push changes from internal: 123201123
This commit is contained in:
commit
0050a205bc
@ -162,7 +162,7 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator):
|
||||
def _run_metrics(self, predictions, targets, metrics, weights):
|
||||
result = {}
|
||||
targets = math_ops.cast(targets, predictions.dtype)
|
||||
for name, metric in six.iteritems(metrics):
|
||||
for name, metric in six.iteritems(metrics or {}):
|
||||
if "weights" in inspect.getargspec(metric)[0]:
|
||||
result[name] = metric(predictions, targets, weights=weights)
|
||||
else:
|
||||
@ -211,7 +211,8 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator):
|
||||
|
||||
def _get_feature_ops_from_example(self, examples_batch):
|
||||
column_types = layers.create_dict_for_parse_example(
|
||||
self._get_linear_feature_columns() + self._get_dnn_feature_columns())
|
||||
(self._get_linear_feature_columns() or []) +
|
||||
(self._get_dnn_feature_columns() or []))
|
||||
features = parsing_ops.parse_example(examples_batch, column_types)
|
||||
return features
|
||||
|
||||
|
@ -1,66 +0,0 @@
|
||||
"""Generic trainer for TensorFlow models.
|
||||
|
||||
This module is deprecated, please use graph_actions.
|
||||
"""
|
||||
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
||||
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
def train(session,
|
||||
train_op,
|
||||
loss,
|
||||
global_step,
|
||||
feed_dict_fn,
|
||||
steps,
|
||||
monitor,
|
||||
summary_writer=None,
|
||||
summaries=None,
|
||||
feed_params_fn=None):
|
||||
"""Trains a model for given number of steps, given feed_dict function.
|
||||
|
||||
Args:
|
||||
session: Session object.
|
||||
train_op: Tensor, trains model.
|
||||
loss: Tensor, loss value.
|
||||
global_step: Tensor, global step of the model.
|
||||
feed_dict_fn: Function that will return a feed dictionary.
|
||||
steps: Number of steps to run.
|
||||
monitor: Monitor object to track training progress and induce early
|
||||
stopping
|
||||
summary_writer: SummaryWriter object to use for writing summaries.
|
||||
summaries: Joined object of all summaries that should be ran.
|
||||
feed_params_fn: Feed params function.
|
||||
"""
|
||||
logging.warning("learn.trainer.train is deprecated. "
|
||||
"Please use learn.graph_actions.train instead.")
|
||||
for step in xrange(steps):
|
||||
feed_dict = feed_dict_fn()
|
||||
if summaries is not None:
|
||||
global_step_value, loss_value, summ, _ = session.run(
|
||||
[global_step, loss, summaries, train_op],
|
||||
feed_dict=feed_dict)
|
||||
else:
|
||||
global_step_value, loss_value, _ = session.run(
|
||||
[global_step, loss, train_op],
|
||||
feed_dict=feed_dict)
|
||||
if summaries is not None and summary_writer and summ is not None:
|
||||
summary_writer.add_summary(summ, global_step_value)
|
@ -131,13 +131,13 @@ class ResizeBilinearOpGrad : public OpKernel {
|
||||
const float inverse_x_lerp = (1.0f - x_lerp);
|
||||
for (int64 c = 0; c < st.channels; ++c) {
|
||||
output_grad(b, top_y_index, left_x_index, c) +=
|
||||
input_grad(b, y, x, c) * inverse_y_lerp * inverse_x_lerp;
|
||||
T(input_grad(b, y, x, c) * inverse_y_lerp * inverse_x_lerp);
|
||||
output_grad(b, top_y_index, right_x_index, c) +=
|
||||
input_grad(b, y, x, c) * inverse_y_lerp * x_lerp;
|
||||
T(input_grad(b, y, x, c) * inverse_y_lerp * x_lerp);
|
||||
output_grad(b, bottom_y_index, left_x_index, c) +=
|
||||
input_grad(b, y, x, c) * y_lerp * inverse_x_lerp;
|
||||
T(input_grad(b, y, x, c) * y_lerp * inverse_x_lerp);
|
||||
output_grad(b, bottom_y_index, right_x_index, c) +=
|
||||
input_grad(b, y, x, c) * y_lerp * x_lerp;
|
||||
T(input_grad(b, y, x, c) * y_lerp * x_lerp);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -165,6 +165,9 @@ REGISTER_KERNEL_BUILDER(Name("ResizeBilinearGrad")
|
||||
ResizeBilinearOpGrad<CPUDevice, float>);
|
||||
REGISTER_KERNEL_BUILDER(Name("ResizeBilinearGrad")
|
||||
.Device(DEVICE_CPU)
|
||||
.TypeConstraint<double>("T"),
|
||||
ResizeBilinearOpGrad<CPUDevice, double>);
|
||||
.TypeConstraint<Eigen::half>("T"),
|
||||
ResizeBilinearOpGrad<CPUDevice, Eigen::half>);
|
||||
REGISTER_KERNEL_BUILDER(
|
||||
Name("ResizeBilinearGrad").Device(DEVICE_CPU).TypeConstraint<double>("T"),
|
||||
ResizeBilinearOpGrad<CPUDevice, double>);
|
||||
} // namespace tensorflow
|
||||
|
@ -15273,6 +15273,44 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeArea"
|
||||
input_arg {
|
||||
name: "images"
|
||||
type_attr: "T"
|
||||
}
|
||||
input_arg {
|
||||
name: "size"
|
||||
type: DT_INT32
|
||||
}
|
||||
output_arg {
|
||||
name: "resized_images"
|
||||
type: DT_FLOAT
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBicubic"
|
||||
input_arg {
|
||||
@ -15368,6 +15406,44 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBicubic"
|
||||
input_arg {
|
||||
name: "images"
|
||||
type_attr: "T"
|
||||
}
|
||||
input_arg {
|
||||
name: "size"
|
||||
type: DT_INT32
|
||||
}
|
||||
output_arg {
|
||||
name: "resized_images"
|
||||
type: DT_FLOAT
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBilinear"
|
||||
input_arg {
|
||||
@ -15463,6 +15539,44 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBilinear"
|
||||
input_arg {
|
||||
name: "images"
|
||||
type_attr: "T"
|
||||
}
|
||||
input_arg {
|
||||
name: "size"
|
||||
type: DT_INT32
|
||||
}
|
||||
output_arg {
|
||||
name: "resized_images"
|
||||
type: DT_FLOAT
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBilinearGrad"
|
||||
input_arg {
|
||||
@ -15520,6 +15634,39 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeBilinearGrad"
|
||||
input_arg {
|
||||
name: "grads"
|
||||
type: DT_FLOAT
|
||||
}
|
||||
input_arg {
|
||||
name: "original_image"
|
||||
type_attr: "T"
|
||||
}
|
||||
output_arg {
|
||||
name: "output"
|
||||
type_attr: "T"
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_FLOAT
|
||||
type: DT_HALF
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeNearestNeighbor"
|
||||
input_arg {
|
||||
@ -15615,6 +15762,44 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeNearestNeighbor"
|
||||
input_arg {
|
||||
name: "images"
|
||||
type_attr: "T"
|
||||
}
|
||||
input_arg {
|
||||
name: "size"
|
||||
type: DT_INT32
|
||||
}
|
||||
output_arg {
|
||||
name: "resized_images"
|
||||
type_attr: "T"
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeNearestNeighborGrad"
|
||||
input_arg {
|
||||
@ -15678,6 +15863,42 @@ op {
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "ResizeNearestNeighborGrad"
|
||||
input_arg {
|
||||
name: "grads"
|
||||
type_attr: "T"
|
||||
}
|
||||
input_arg {
|
||||
name: "size"
|
||||
type: DT_INT32
|
||||
}
|
||||
output_arg {
|
||||
name: "output"
|
||||
type_attr: "T"
|
||||
}
|
||||
attr {
|
||||
name: "T"
|
||||
type: "type"
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT32
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
}
|
||||
attr {
|
||||
name: "align_corners"
|
||||
type: "bool"
|
||||
default_value {
|
||||
b: false
|
||||
}
|
||||
}
|
||||
}
|
||||
op {
|
||||
name: "Restore"
|
||||
input_arg {
|
||||
|
@ -22,7 +22,7 @@ REGISTER_OP("ResizeArea")
|
||||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, half, float, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using area interpolation.
|
||||
@ -44,7 +44,7 @@ REGISTER_OP("ResizeBicubic")
|
||||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, half, float, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using bicubic interpolation.
|
||||
@ -66,7 +66,7 @@ REGISTER_OP("ResizeBilinear")
|
||||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: float")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, half, float, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using bilinear interpolation.
|
||||
@ -88,7 +88,7 @@ REGISTER_OP("ResizeBilinearGrad")
|
||||
.Input("grads: float")
|
||||
.Input("original_image: T")
|
||||
.Output("output: T")
|
||||
.Attr("T: {float, double}")
|
||||
.Attr("T: {float, half, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Computes the gradient of bilinear interpolation.
|
||||
@ -109,7 +109,7 @@ REGISTER_OP("ResizeNearestNeighbor")
|
||||
.Input("images: T")
|
||||
.Input("size: int32")
|
||||
.Output("resized_images: T")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, float, double}")
|
||||
.Attr("T: {uint8, int8, int16, int32, int64, half, float, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Resize `images` to `size` using nearest neighbor interpolation.
|
||||
@ -129,7 +129,7 @@ REGISTER_OP("ResizeNearestNeighborGrad")
|
||||
.Input("grads: T")
|
||||
.Input("size: int32")
|
||||
.Output("output: T")
|
||||
.Attr("T: {uint8, int8, int32, float, double}")
|
||||
.Attr("T: {uint8, int8, int32, half, float, double}")
|
||||
.Attr("align_corners: bool = false")
|
||||
.Doc(R"doc(
|
||||
Computes the gradient of nearest neighbor interpolation.
|
||||
|
@ -9004,6 +9004,7 @@ op {
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
@ -9047,6 +9048,7 @@ op {
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
@ -9090,6 +9092,7 @@ op {
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
@ -9129,6 +9132,7 @@ op {
|
||||
allowed_values {
|
||||
list {
|
||||
type: DT_FLOAT
|
||||
type: DT_HALF
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
}
|
||||
@ -9170,6 +9174,7 @@ op {
|
||||
type: DT_INT16
|
||||
type: DT_INT32
|
||||
type: DT_INT64
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
@ -9210,6 +9215,7 @@ op {
|
||||
type: DT_UINT8
|
||||
type: DT_INT8
|
||||
type: DT_INT32
|
||||
type: DT_HALF
|
||||
type: DT_FLOAT
|
||||
type: DT_DOUBLE
|
||||
}
|
||||
|
@ -7,7 +7,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
|
@ -7,7 +7,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
|
@ -7,7 +7,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
|
@ -5,7 +5,7 @@ Resize `images` to `size` using nearest neighbor interpolation.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
|
@ -265,7 +265,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
@ -292,7 +292,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
@ -319,7 +319,7 @@ Input images can be of different types but output images are always float.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
@ -344,7 +344,7 @@ Resize `images` to `size` using nearest neighbor interpolation.
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||||
* <b>`images`</b>: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||||
4-D with shape `[batch, height, width, channels]`.
|
||||
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||||
new size for the images.
|
||||
|
@ -187,7 +187,7 @@ source "${VENV_DIR}/bin/activate" || \
|
||||
|
||||
# Force tensorflow reinstallation. Otherwise it may not get installed from
|
||||
# last build if it had the same version number as previous build.
|
||||
PIP_FLAGS="--upgrade --no-deps --force-reinstall"
|
||||
PIP_FLAGS="--upgrade --force-reinstall"
|
||||
pip install -v ${PIP_FLAGS} ${WHL_PATH} || \
|
||||
die "pip install (forcing to reinstall tensorflow) FAILED"
|
||||
echo "Successfully installed pip package ${WHL_PATH}"
|
||||
|
@ -39,12 +39,10 @@ apt-get install -y \
|
||||
openjdk-8-jre-headless \
|
||||
pkg-config \
|
||||
python-dev \
|
||||
python-numpy \
|
||||
python-pandas \
|
||||
python-pip \
|
||||
python-virtualenv \
|
||||
python3-dev \
|
||||
python3-numpy \
|
||||
python3-pandas \
|
||||
python3-pip \
|
||||
sudo \
|
||||
|
@ -16,13 +16,52 @@
|
||||
|
||||
set -e
|
||||
|
||||
# Use pip to install scipy to get the latest version, instead of 0.13 through
|
||||
# apt-get
|
||||
pip install scipy==0.15.1
|
||||
pip3 install scipy==0.15.1
|
||||
# Install pip packages from whl files to avoid the time-consuming process of
|
||||
# building from source.
|
||||
|
||||
pip install sklearn
|
||||
pip3 install scikit-learn
|
||||
# Use pip to install numpy to the latest version, instead of 1.8.2 through
|
||||
# apt-get
|
||||
wget -q https://pypi.python.org/packages/06/92/3c786303889e6246971ad4c48ac2b4e37a1b1c67c0dc2106dc85cb15c18e/numpy-1.11.0-cp27-cp27mu-manylinux1_x86_64.whl#md5=6ffb66ff78c28c55bfa09a2ceee487df
|
||||
mv numpy-1.11.0-cp27-cp27mu-manylinux1_x86_64.whl \
|
||||
numpy-1.11.0-cp27-none-linux_x86_64.whl
|
||||
pip install numpy-1.11.0-cp27-none-linux_x86_64.whl
|
||||
rm numpy-1.11.0-cp27-none-linux_x86_64.whl
|
||||
|
||||
wget -q https://pypi.python.org/packages/ea/ca/5e48a68be496e6f79c3c8d90f7c03ea09bbb154ea4511f5b3d6c825cefe5/numpy-1.11.0-cp34-cp34m-manylinux1_x86_64.whl#md5=08a002aeffa20354aa5045eadb549361
|
||||
mv numpy-1.11.0-cp34-cp34m-manylinux1_x86_64.whl \
|
||||
numpy-1.11.0-cp34-cp34m-linux_x86_64.whl
|
||||
pip3 install numpy-1.11.0-cp34-cp34m-linux_x86_64.whl
|
||||
rm numpy-1.11.0-cp34-cp34m-linux_x86_64.whl
|
||||
|
||||
# Use pip to install scipy to get the latest version, instead of 0.13 through
|
||||
# apt-get.
|
||||
# pip install scipy==0.17.1
|
||||
wget -q https://pypi.python.org/packages/8a/de/326cf31a5a3ba0c01c40cdd78f7140b0510ed80e6d5ec5b2ec173c72df03/scipy-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl#md5=8d0df61ceba78a2796f8d90fc979576f
|
||||
mv scipy-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl \
|
||||
scipy-0.17.1-cp27-none-linux_x86_64.whl
|
||||
pip install scipy-0.17.1-cp27-none-linux_x86_64.whl
|
||||
rm scipy-0.17.1-cp27-none-linux_x86_64.whl
|
||||
|
||||
# pip3 install scipy==0.17.1
|
||||
wget -q https://pypi.python.org/packages/eb/2e/76aff3b25dd06cab06622f82a4790ff5002ab686e940847bb2503b4b2122/scipy-0.17.1-cp34-cp34m-manylinux1_x86_64.whl#md5=bb39b9e1d16fa220967ad7edd39a8b28
|
||||
mv scipy-0.17.1-cp34-cp34m-manylinux1_x86_64.whl \
|
||||
scipy-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
pip3 install scipy-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
rm scipy-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
|
||||
# pip install sklearn
|
||||
wget -q https://pypi.python.org/packages/bf/80/06e77e5a682c46a3880ec487a5f9d910f5c8d919df9aca58052089687c7e/scikit_learn-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl#md5=337b91f502138ba7fd722803138f6dfd
|
||||
mv scikit_learn-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl \
|
||||
scikit_learn-0.17.1-cp27-none-linux_x86_64.whl
|
||||
pip install scikit_learn-0.17.1-cp27-none-linux_x86_64.whl
|
||||
rm scikit_learn-0.17.1-cp27-none-linux_x86_64.whl
|
||||
|
||||
# pip3 install scikit-learn
|
||||
wget -q https://pypi.python.org/packages/7e/f1/1cc8a1ae2b4de89bff0981aee904ff05779c49a4c660fa38178f9772d3a7/scikit_learn-0.17.1-cp34-cp34m-manylinux1_x86_64.whl#md5=a722a7372b64ec9f7b49a2532d21372b
|
||||
mv scikit_learn-0.17.1-cp34-cp34m-manylinux1_x86_64.whl \
|
||||
scikit_learn-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
pip3 install scikit_learn-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
rm scikit_learn-0.17.1-cp34-cp34m-linux_x86_64.whl
|
||||
|
||||
# Benchmark tests require the following:
|
||||
pip install psutil
|
||||
@ -33,3 +72,12 @@ pip3 install py-cpuinfo
|
||||
# pylint tests require the following:
|
||||
pip install pylint
|
||||
pip3 install pylint
|
||||
|
||||
# Remove packages in /usr/lib/python* that may interfere with packages in
|
||||
# /usr/local/lib. These packages may get installed inadvertantly with packages
|
||||
# such as apt-get python-pandas. Their older versions can mask the more recent
|
||||
# versions installed above with pip and cause test failures.
|
||||
rm -rf /usr/lib/python2.7/dist-packages/numpy \
|
||||
/usr/lib/python2.7/dist-packages/scipy \
|
||||
/usr/lib/python3/dist-packages/numpy \
|
||||
/usr/lib/python3/dist-packages/scipy
|
||||
|
Loading…
Reference in New Issue
Block a user